View More View Less
  • 1 NARIC Institute of Agricultural Engineering, Gödöllő, Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $184.00

The emission of particulate matter from agricultural sources is a worldwide environmental issue due to health concerns.

The main factors influencing PM10 emission from crop production are the origin of particles, the physical and chemical properties of soils, meteorological conditions, and the mechanical impacts of farm operations. Several studies have been made to determine PM10 emission factors for tillage operations, but these emission factors varied depending on soil properties, especially soil texture and water content, and environmental conditions (e.g. relative humidity, and variability in wind speed and direction). This is why the use of a single emission factor for a given tillage operation is inadequate.

To estimate the yearly amount of PM10 emitted from agricultural soils and crop production, emissions originating from different sources at different temporal division must be summarized. Because 56 % of the total territory of Hungary is cropland, relatively high PM10 emission occurs from crop production and agricultural soils. If this is to be reduced, research should focus on the identification of soil and environmental properties related to PM10 emission on characteristic Hungarian soils.

  • Aimar, S.B., Mendez, M.J., Funk, R., Buschiazzo, D.E., 2012. Soil properties related to potential particulate matter emissions (PM10) of sandy soils. Aeolian Res. 3. 437443.

    • Search Google Scholar
    • Export Citation
  • Alfaro, S.C., 2008. Influence of soil texture on the binding energies of fine mineral dust particles potentially released by wind erosion. Geomorphology 93. 157167.

    • Search Google Scholar
    • Export Citation
  • Avecilla F. , Panebianco J. E., Buschiazzo D. E., 2016. A wind-tunnel study on saltation and PM10 emission from agricultural soils. Aeolian Research. 22. 7383.

    • Search Google Scholar
    • Export Citation
  • Avecilla F. , Panebianco J. E., Buschiazzo D. E., 2017. Meteorological conditions during dust (PM10) emission from a tilled loam soil: Identifying variables and thresholds. Agricultural and Forest Meteorology. 244245. 21-32.

    • Search Google Scholar
    • Export Citation
  • Baker, J.B., Southard, R.J., Mitchell, J.P., 2005. Agricultural dust production in standard and conservation tillage systems in the San Joaquin Valley. Journal of Environmental Quality. 34. 12601269.

    • Search Google Scholar
    • Export Citation
  • Bogman, P., Cornelis, W., Rolle, H., Gabriels, D., 2005. Prediction of TSP and PM10 emissions from agricultural operations in Flanders, Belgium. In: 14th International Conference “Transport and Air Pollution”, Graz, Austria, June 1-3, 2005.

    • Search Google Scholar
    • Export Citation
  • Bolte, K., Hartmann, P., Fleige, H., Horn, R., 2011. Determination of critical soil water content and matric potential for wind erosion. J. Soils Sediments. 11. 209220

    • Search Google Scholar
    • Export Citation
  • Capareda, S. C., Wang, L., Parnell Jr., C. B., and Shaw, B. W., 2004. Particle size distribution of particulate matter emitted by agricultural operations: Impacts on FRM PM10 and PM2.5 Concentration Measurements. In: Proc. of the 2004 Beltwide Cotton Production Conferences, National Cotton Council, Memphis, Tenn.

    • Search Google Scholar
    • Export Citation
  • Carvacho, O.F., Ashbaugh, L.L., Brown, M.S., Flocchini, R.G., 2004. Measurement of PM2.5 emission potential from soil using the UC Davis resuspension test chamber. Geomorphology. 59. 7580.

    • Search Google Scholar
    • Export Citation
  • Cassel T , Trzepla-Nabaglo K, Flocchini R. 2003. PM10 emission factors for harvest and tillage of row crops. International Emission Inventory Conference ‘Emission Inventories – Applying New Technologies’, San Diego, 29 April to 1 May. https://www3.epa.gov/ttn/chief/conference/ei12/poster/cassel.pdf

    • Search Google Scholar
    • Export Citation
  • CEIP, 2015, ‘Officially reported emission data’, the Convention on Long-range Transboundary Air Pollution Centre on Emission Inventories and Projections (http://www.ceip.at/ms/ceip_home1/ceip_home/webdab_emepdatabase/reporte d_emissiondata/), last accessed September 2016.

    • Search Google Scholar
    • Export Citation
  • Clausnitzer, H., Singer, M.J., 1996. Respirable-dust production from agricultural operations in the Sacramento Valley, California. J. Environ. Qual. 25. 877884.

    • Search Google Scholar
    • Export Citation
  • Chen, W.N., Dong, Z.B., Li, Z.S., Yang, Z.T., 1996. Wind tunnel test of the influence of moisture on the erodibility of loessial sandy loam soils by wind. J. Arid Environ. 34. 391402.

    • Search Google Scholar
    • Export Citation
  • Chen, W., Tong, D., Zhang, S., Dan, M., Zhang, X., Zhao, H., 2015. Temporal variability of atmospheric particulate matter and chemical composition during a growing season at an agricultural site in northeastern China. Journal of Environmental Science. 38. 133133.

    • Search Google Scholar
    • Export Citation
  • Chen W. , Tong, D.Q., Zhang S., ZHANG, X, Zhao, H., 2017. Local PM10 and PM2,5 emission inventories from agricultural tillage and harvest in northeastern China. Journal of Environmental Science. 57. 1515.

    • Search Google Scholar
    • Export Citation
  • Chepil W. S. 1956. Influence of moisture on erodibility of soil by wind. Soil Science Society of America Journal. 20. 288292.

  • Cornelis, W. M., Gabriels, D., 2003. The effect of surface moisture on the entrainment of dune sand by wind: an evaluation of selected models. Sedimentology. 50. 771790.

    • Search Google Scholar
    • Export Citation
  • Coscolla, C., Munoz, A., Borras, E., Vera, T., Rodenas, M., Yusa, V., 2014. Particle size distributions of currently used pesticides in ambient air of an agricultural Mediterranean area. Atmospheric Environment. 95. 2929.

    • Search Google Scholar
    • Export Citation
  • Cowherd C. , Axetell K., Guenther, C.M., Jutze, G.A. 1974. Development of Emission Factors for Fugitive Dust Sources, USEPA-450/3-74-037. United States Environmental Protection Agency (USEPA), Research Triangle Park, NC.

    • Search Google Scholar
    • Export Citation
  • Csavina J. , Field J.P., Felix O., Corral-Avitia A.Y., Saez A.E., Betterton E.A., 2014. Effect of wind speed and relative humidity on atmospheric dust concentrations in semi-arid climates. Sci. Total Environ. 487. 82-90

    • Search Google Scholar
    • Export Citation
  • Darke, I., Neuman, C.M., 2008. Field study of beach water content as a guide to wind erosion potential. J. Coastal Res. 24. 12001208.

    • Search Google Scholar
    • Export Citation
  • De Oro L. , Buschiazzo D.E., 2009. Threshold wind velocity as an index of soil susceptibility to wind erosion under variable climatic conditions. Land Degrad. Develop. 20. 1414.

    • Search Google Scholar
    • Export Citation
  • DIRECTIVE 2008/50/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 21 May 2008 on ambient air quality and cleaner air for Europe

  • DIRECTIVE 2016/2284/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 14 December 2016 on the reduction of national emissions of certain atmospheric pollutants, amending Directive 2003/35/EC and repealing Directive 2001/81/EC

  • EEA, 2017. Air quality in Europe - 2017 report, EEA Report No 13/2017, European Environment Agency, 2017, https://www.eea.europa.eu/publications/airquality- in-europe-2017

  • EMEP/EEA, 2016. EMEP/EEA air pollutant emission inventory guidebook 2016 — Technical guidance to prepare national emission inventories, EEA Technical Report No 21/2016, European Environment Agency (http://www.eea.europa.eu/emep-eea-guidebook), accessed 30 September 2016.

  • EU, (2017) The EU Environmental Implementation Review Country Report – HUNGARY Brussels, 3.2.2017 SWD 46 final, COMMISSION STAFF WORKING DOCUMENT, EUROPEAN COMMISSION, 2017 http://ec.europa.eu/environment/eir/country-reports/index2_en.htm

    • Search Google Scholar
    • Export Citation
  • Farsang A. , Duttmann R., Bartus M., Szatmári J., Barta K., Bozsó G. (2013): Estimation of soil material transportation by wind based on in situ wind tunnel experiments. Journal of Environmental Geography 6. (3–4) 1320.

    • Search Google Scholar
    • Export Citation
  • Faulkner, W. B., Capareda, S. C., 2012. Effects of sweeping depth on particulate matter emissions from almond harvest operations. Atmospheric Pollution Research. 3. 219219.

    • Search Google Scholar
    • Export Citation
  • Flocchini, R.G., James, T.A., Ashbaugh, L.L., Brown, M.S., Carvacho, O.F., Holmén, B.A., Matsumura, R.T., Trzeplanabaglo, K., Tsubamoto, C. 2001. Sources and Sinks of PM10 in the San Joaquin Valley – Interim Report. United States Department of Agriculture Special Research Grants Program; Contract Nos. 94-33825-0383 and 98-38825-6063. Air Quality Group, Crocker Nuclear Laboratory, University of California, Davis.

    • Search Google Scholar
    • Export Citation
  • Funk, R., Reuter, H.I., 2004. Dust production from arable land caused by wind erosion and tillage operations. In: Eurosoil 2004, September 4th to 12th, Freiburg, Germany: Abstracts: 254; Freiburg (Albert-Ludwigs-Universität).

    • Search Google Scholar
    • Export Citation
  • Funk, R., Reuter, H.I., Hoffmann, C., Engel, W., Öttl, D., 2008. Effect of moisture on fine dust emission from tillage operations on agricultural soils. Earth Surf. Proc. Land. 33. (12) 18511863.

    • Search Google Scholar
    • Export Citation
  • Gao F. , Feng G., Sharratt B., Zhang M., 2014. Tillage and straw management affect PM10 emission potential in subarctic Alaska. Soil Tillage Res. 144. 11.

    • Search Google Scholar
    • Export Citation
  • Gillette, D.A., Fryrear, D.W., Gill, T.E., Ley, T., Cahill, T.A., Gearhart, E.A., 1997a. Relation of vertical flux of particles smaller than 10 μm to total aeolian horizontal mass flux at Owens Lake. J. Geophys. Res. 102. 2600926015.

    • Search Google Scholar
    • Export Citation
  • Goossens D. , Gross J., Spaan W., 2001. Aeolina dust dynamics in agricultural land areas n Lower Saxony, Germany. Earth Surface Processes and Landforms 26. 701720 (2001) DOI: 10.1002/esp.216

    • Search Google Scholar
    • Export Citation
  • Hagen, L.J., Van Pelt, S., Sharratt, B., 2010. Estimating the saltation and suspension components from field wind erosion. Aeolian Res. 1. 147153.

    • Search Google Scholar
    • Export Citation
  • Hinz, T., 2004. Agricultural PM10 emission from plant production. Proceedings of the PM Emission Inventories Scientific Workshop.

  • Hinz, T., Tamoschat-Depolt, K. (eds.), 2007. ‘Particulate Matter in and from Agriculture’, Landbauforschung Völkenrode. Special Issue 308.

    • Search Google Scholar
    • Export Citation
  • Hoffmann C. , Funk R., 2015. Diurnal changes of PM10-emission from arable soils in NE-Germany. Aeolian Research. 17. 117127.

  • Holmén, B.A., James, T.A., Ashbaugh, L.L., Flocchini, R.G., 2001a. LIDARassisted measurement of PM10 emissions from agricultural tilling in California’s San Joaquin Valley - Part I: lidar. Atmospheric Environment. 35. 32513251.

    • Search Google Scholar
    • Export Citation
  • Holmén, B.A., James, T.A., Ashbaugh, L.L., Flocchini, R.G., 2001b. LIDARassisted measurement of PM10 emissions from agricultural tilling in California’s San Joaquin Valley - Part II: Emission factors. Atmospheric Environment. 35. 32653277.

    • Search Google Scholar
    • Export Citation
  • Hussein T. , Karppinen A., 2006. Meteorological dependence of size-fractionated number concentrations of urban aerosol particles. Atmos. Environ. 40. 1427-1440.

    • Search Google Scholar
    • Export Citation
  • Informative Inventory ReporT 2015 – Hungary., 2017. Hungarian Meteorological Service pp. 176. http://www.ceip.at/ms/ceip_home1/ceip_home/status_reporting/2017_submiss ions/

    • Search Google Scholar
    • Export Citation
  • Iturri L.A. , Funk R., Leue M., Sommer M., Buschiazzo D. E., 2017. Wind sorting affects differently the organo-mineral composition of saltating and particulate materials in contrasting texture agricultural soils. Aeolian Research. 28. 3949.

    • Search Google Scholar
    • Export Citation
  • Kasumba, J., Holmen, B.A., Hiscox, A., Wang, J., Miller, D., 2011. Agricultural PM10 emissions from cotton field disking in Las Cruces, NM. Atmospheric Environment. 45. 16681674.

    • Search Google Scholar
    • Export Citation
  • Kjelgaard J. , Chandler D., Saxton K., 2004. Evidence for direct suspension of loessial soils on the Columbia Plateau. Earth Surf. Process. Landforms. 29. 221221.

    • Search Google Scholar
    • Export Citation
  • Kok J. F. , Parteli E. J. R., Michaels T. I., Karam D.B., 2012. The physics of wind-blown sand and dust. Rep. Prog. Phys. 75. 106901. https://arxiv.org/ftp/arxiv/papers/1201/1201.4353.pdf

    • Search Google Scholar
    • Export Citation
  • Le Blond, J. S., Woskie, S., Horwell, C. J., Williamson, B. J., 2016. Particulate matter produced during commercial sugarcane harvesting and processing: A respiratory health hazard? Atmospheric Environment. 149. 3434.

    • Search Google Scholar
    • Export Citation
  • Madden N.M. , Southard R.J., Mitchell J.P., 2008. Conservation tillage reduces PM10 emissions in dairy forage rotations. Atmospheric Environment. 42. (16) 37953808.

    • Search Google Scholar
    • Export Citation
  • Madden N.M. , Southard R.J., Mitchell J.P., 2010. Soil water and particle size distribution influence laboratory-generated PM10. Atmos. Environ. 44. 745-752.

    • Search Google Scholar
    • Export Citation
  • Matsumura, R.T., Ashbaugh, L., James, T., Carvacho, O., Flocchini, R., 2003. Size distribution of PM10 soil dust emissions from harvesting crops. In: Rapport, D.J., Lasley, W.L., Rolston, D.E., Nielsen, N.O., Qualset, C.O., Damania, A.B. (eds.), Managing for Healthy Ecosystems. Boca Raton, FL: CRC Press. pp. 801806.

    • Search Google Scholar
    • Export Citation
  • Mendez M. J. , Panebianco J.E., Buschiazzo D.E., 2013. A new dust generator for laboratory dust emission studies. Aeolian Research. 8. 5959.

    • Search Google Scholar
    • Export Citation
  • Mendez M. J. , Aimar S. B., Buschiazzo D. E., 2015. PM10 emissions from aggregate fractions of an Entic Haplustoll under two contrasting tillage systems. Aeolian Research. 19. 195195.

    • Search Google Scholar
    • Export Citation
  • Négyesi G , Lóki J., Buró B., Szabó J., Bakacsi Z., Pásztor L. (2015): The potential wind erosion map of an area covered by sandy and loamy soils – based on wind tunnel measurements. Zeitschrift für Geomorphologie. 59. (1) 5977.

    • Search Google Scholar
    • Export Citation
  • Öttl, D., Funk, R., Sturm, P., 2005. PM emission factors for farming activities. In: Proceedings of the 14th Symposium Transport and Air Pollution, 1–3.6 2005, Technical University Graz, Austria

    • Search Google Scholar
    • Export Citation
  • Öttl D. , Funk R., 2007. PM emission factors for farming activities by means of dispersion modeling. Landbauforschung Völkenrode. SH308. 173177.

    • Search Google Scholar
    • Export Citation
  • Pásztor L. , Négyesi G., Laborczi A., Kovács T., László E., Bihari Z. (2016): Integrated spatial assessment of wind erosion risk in Hungary. Nat. Hazards Earth Syst. Sci. 16. 24212432.

    • Search Google Scholar
    • Export Citation
  • Pearce, D., Crowards, T., 1996. Particulate matter and human health in the United Kingdom. Energy Policy. 24. (7) 609619.

  • Pease, P., Gare, P., Lecce, S., 2002. Eolian dust erosion from an agricultural field on the North Carolina Coastal Plain. Phys. Geogr. 23. 381400.

    • Search Google Scholar
    • Export Citation
  • Qiu, G., Pattey, E., 2008. Estimating PM10 emissions from spring wheat harvest using an atmospheric tracer technique. Atmospheric Environment. 42. 8315-8321.

    • Search Google Scholar
    • Export Citation
  • Roney, J.A., White, B.R., 2006. Estimating fugitive dust emission rates using an environmental boundary layer wind tunnel. Atmos. Environ. 40. (40) 76687685.

    • Search Google Scholar
    • Export Citation
  • Selah, A., Fryrear, D.W., 1995. Threshold wind velocities of wet soils as affected by wind blown sand. Soil Sci. 160. 304309.

  • Sharratt B. , Feng G., 2009. Windblown dust influenced by conventional and undercutter tillage within the Columbia Plateau, USA. Earth Surf. Process. Landf., 34. 13231323.

    • Search Google Scholar
    • Export Citation
  • Sharratt B.S. , Vaddella V., 2014. Threshold friction velocity of crusted windblown soils in the Columbia Plateau. Aeolian Res. 15. 227227.

    • Search Google Scholar
    • Export Citation
  • Sharratt B. , Wendling L., Feng G., 2010. Windblown dust affected by tillage intensity during summer fallow Aeolian Res. 2. 129129.

  • Sharratt B. , Wendling L., Feng G., 2012. Surface characteristics of a windblown soil altered by tillage intensity during summer fallow. Aeolian Res. 5. 17.

    • Search Google Scholar
    • Export Citation
  • Singh P. , Sharratt B., Schillinger W.F., 2012. Wind erosion and PM10 emission affected by tillage systems in the world’s driest rainfed wheat region. Soil & Tillage Research. 124. 219225.

    • Search Google Scholar
    • Export Citation
  • Stovern M. , Rine K.P., Russell M.R., Fèlix O., King M., Sàez A.E., Betterton E.A., 2015. Development of a dust deposition forecasting model for mine tailings impoundments using in situ observations and particle transport simulations. Aeolian Res. 18. 155155.

    • Search Google Scholar
    • Export Citation
  • Swet, N., Katra, I., 2016. Reduction in soil aggregation in response to dust emission processes. Geomorph. 268. (1) 177183.

  • Van Der Hoek, K., Hinz, T., 2007. Particulate matter emissions from arable production - A guide for UNECE emission inventories. In: Hinz, T., Tamoschat, Depolt, K. (eds.). Particulate Matter in and from Agriculture. Landbauforschung Völkenrode. Special Issue308. 1519.

    • Search Google Scholar
    • Export Citation
  • Van Der Zee, S.C., Hoek, G., Harssema, H., Brunekreef, B., 1998. Characterization of particulate air pollution in urban and non-urban areas in the Netherlands. Atmospheric Environment. 32. (21) 37173729.

    • Search Google Scholar
    • Export Citation
  • Weinan C. , Zhibao D., Zhenshan L., Zuotao Y. 1996. Wind tunnel test of the influence of moisture on the erodibility of loessial sandy loam soils by wind. Journal of Arid Environment. 34. 391402.

    • Search Google Scholar
    • Export Citation
  • Wang J. , Miller, D.R., Sammis, T.W., Hiscox, A.L., Yang, W.L., Holmén, B.A. 2010. Local dust emission factors for agricultural tilling operations. Soil Sci. 175. (4.) 194200.

    • Search Google Scholar
    • Export Citation
  • WHO, 2013. Health effects of particulate matter. Policy implications for countries in eastern Europe, Caucasus and central Asia, WORLD HEALTH ORGANIZATION http://www.euro.who.int/__data/assets/pdf_file/0006/189051/Health-effectsof- particulate-matter-final-Eng.pdf

    • Search Google Scholar
    • Export Citation
  • Zender C.S. , Miller R.L., Tegen I., 2004. Quantifying mineral dust mass budgets: terminology, constraints, and current estimates. EOS. 85. (48) 509-512.

    • Search Google Scholar
    • Export Citation
  • Zobeck, T.M., Gill, T.E., Popham, T.W., 1999. A two-parameter Weibull function to describe airborne dust particle size distributions. Earth Surf. Process. Landforms. 24. 943955.

    • Search Google Scholar
    • Export Citation

Senior editors

Editor(s)-in-Chief: Rajkai, Kálmán

Technical Editor(s): Koós, Sándor

Technical Editor(s): Vass, Csaba

Editorial Board

  • Bidló, András (Soproni Egyetem, Erdőmérnöki Kar, Környezet- és Földtudományi Intézet, Sopron)
  • Blaskó, Lajos (Debreceni Egyetem, Agrártudományi Központ, Karcagi Kutatóintézet, Karcag)
  • Buzás, István (Szent István Egyetem, Georgikon Kar, Keszthely)
  • Farsang, Andrea (Szegedi Tudományegyetem, Természettudományi és Informatikai Kar, Szeged)
  • Filep, Tibor (Csillagászati és Földtudományi Központ, Földrajztudományi Intézet, Budapest)
  • Fodor, Nándor (Agrártudományi Kutatóközpont, Mezőgazdasági Intézet, Martonvásár)
  • Győri, Zoltán (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Jolánkai, Márton (Szent István Egyetem, Növénytermesztési Intézet, Gödöllő)
  • Kátai, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Lehoczky, Éva (Agrártudományi Kutatóközpont, Talajtani és Agrokémiai Intézet, Budapest)
  • Makó, András (Agrártudományi Kutatóközpont, Talajtani és Agrokémiai Intézet, Budapest)
  • Michéli, Erika (Szent István Egyetem, Mezőgazdaság- és Környezettudományi Kar, Gödöllő)
  • Németh, Tamás (Agrártudományi Kutatóközpont, Talajtani és Agrokémiai Intézet, Budapest)
  • Pásztor, László (Agrártudományi Kutatóközpont, Talajtani és Agrokémiai Intézet, Budapest)
  • Ragályi, Péter (Agrártudományi Kutatóközpont, Talajtani és Agrokémiai Intézet, Budapest)
  • Schmidt, Rezső (Széchenyi István Egyetem, Mezőgazdaság- és Élelmiszertudományi Kar, Mosonmagyaróvár)
  • Szili-Kovács, Tibor (Agrártudományi Kutatóközpont, Talajtani és Agrokémiai Intézet, Budapest)
  • Tamás, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Tóth, Gergely (Agrártudományi Kutatóközpont, Talajtani és Agrokémiai Intézet, Budapest)
  • Tóth, Tibor (Agrártudományi Kutatóközpont, Talajtani és Agrokémiai Intézet, Budapest)
  • Tóth, Zoltán (Szent István Egyetem, Georgikon Kar, Keszthely)

 

International Advisory Board

  • Blum, Winfried E. H. (Institute for Soil Research, University of Natural Resources and Life Sciences (BOKU), Wien, Austria)
  • Hofman, Georges (Department of Soil Management, Ghent University, Gent, Belgium)
  • Horn, Rainer (Institute of Plant Nutrition and Soil Science, Christian Albrechts University, Kiel, Germany)
  • Lichner, Ljubomir (Institute of Hydrology, Slovak Academy of Sciences, Bratislava, Slovak Republic)
  • Loch, Jakab (Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary)
  • Nemes, Attila (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Pachepsky, Yakov (Environmental Microbial and Food Safety Lab USDA, Beltsville, MD, USA)

 

           International Editorial Board

  • Kätterer, Thomas (Swedish University of Agricultural Sciences (SLU), Sweden)
  • Ole Wendroth (Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, USA)
  • Simota, Catalin Cristian (The Academy of Agricultural and Forestry Sciences, Bucharest, Romania)
  • Stolte, Jannes (Norwegian Institute of Bioeconomy Research, Ås, Norway)

Rajkai Kálmán
ATK Talajtani és Agrokémiai Intézet
Herman Ottó út 15., H-1022 Budapest, Hungary
Phone: (+36 1) 212 2265
Fax: (+36 1) 485 5217
E-mail: editorial.agrokemia@atk.hu

Indexing and Abstracting Services:

  • CAB Abstracts
  • EMBiology
  • Global Health
  • SCOPUS
  • CABI

2020  
Scimago
H-index
9
Scimago
Journal Rank
0,179
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
48/73=0,7
Scopus
Cite Score Rank
Agronomy and Crop Science 278/347 (Q4)
Soil Science 108/135 (Q4)
Scopus
SNIP
0,18
Scopus
Cites
48
Scopus
Documents
6
Days from submission to acceptance 130
Days from acceptance to publication 152
Acceptance
Rate
65%

 

2019  
Scimago
H-index
9
Scimago
Journal Rank
0,204
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
49/88=0,6
Scopus
Cite Score Rank
Agronomy and Crop Science 276/334 (Q4)
Soil Science 104/126 (Q4)
Scopus
SNIP
0,423
Scopus
Cites
96
Scopus
Documents
27
Acceptance
Rate
91%

 

Agrokémia és Talajtan
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 144 EUR / 194 USD
Print + online subscription: 160 EUR / 232 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Agrokémia és Talajtan
Language Hungarian, English
Size B5
Year of
Foundation
1951
Publication
Programme
2021 Volume 70
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0002-1873 (Print)
ISSN 1588-2713 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2021 7 0 0
Mar 2021 9 0 0
Apr 2021 1 0 0
May 2021 3 0 0
Jun 2021 2 0 0
Jul 2021 2 0 0
Aug 2021 0 0 0