View More View Less
  • 1 Szent István University, Gödöllő, Hungary
  • | 2 Hungarian Academy of Sciences, Budapest, Hungary
  • | 3 Szent István University, Gödöllő, Hungary
  • | 4 Nutrition Institute, Debrecen University, Debrecen, Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $184.00

The estimation of environmental risk caused by pollution with potentially toxic elements (PTE) is usually carried out using the (3+1) step sequential extraction procedure suggested in 1993 by the Community Bureau of Reference (BCR). In the 1st step the water-soluble, exchangeable and carbonate-bound element content is extracted with acetic acid. In 2002 a fractionation procedure based on the application of supercritical CO2, subcritical H2O and of a mixture of subcritical H2O/CO2 was proposed, which allowed the water-soluble and carbonatebound element contents to be extracted separately from sediment or soil samples weighed into the preparative column of a supercritical fluid extractor and diluted with quartz sand in a mass ratio of 1:20. The aim of the present study was to develop a new reduced-size column construction with which this dilution rate could be decreased to 1:2. A kinetic study was performed to determine the extraction time necessary for samples with different carbonate contents and the extracted element contents were compared to the results of the BCR sequential procedure on the same samples. It was established that fractionation using the reduced-size column may be a rapid way to obtain more reliable information on the easily mobilizable (watersoluble and carbonate-bound) PTE content of soils and sediments than was previously available to supplement BCR fractionation.

  • Baig, M.N., Leeke, G.A., Hammond, P.J., Santos, R.C.D., 2011. Modelling the extraction of soil contaminants with supercritical carbon dioxide, Environ. Poll. 159. (7) 1802-1809.

    • Search Google Scholar
    • Export Citation
  • Bakircioglu, D., Bakircioglu, Y. K., IBAR, H, 2011. Comparison of extraction procedures for assessing soil metal bioavailability of to wheat grains. Clean Soil, Air, Water. 39. (8) 728734.

    • Search Google Scholar
    • Export Citation
  • Bowadt, S., Hawthorne, S.B., 1995. Supercritical fluid extraction in environmental analysis. J. Chromatogr. 703. 549571, SSDI 0021-9673(95)00051-8 EUROPEAN COMMISSION, BCR-701 LAKE SEDIMENT (trace elements)- BCR-701 Certificated (https://crm.jrc.ec.europa.eu/p/40455/40459/By-kind-ofmaterial/ Soils-sludges-sediment-dust/BCR-701-LAKE-SEDIMENT-traceelements/ BCR-701) 2018.03.22.

    • Search Google Scholar
    • Export Citation
  • Fiedler, H.D.. López-Sánchez, J.F.. Rubio, R.. Rauret, G.. Quevauviller, P. Ure A. M. AND Muntau H., 1994. Study of the stability of extractable trace metal contents in a river sediment using sequential extraction. Analyst. 119. 1109-1114.

    • Search Google Scholar
    • Export Citation
  • Halász G. , Rusnák R., Fekete I., Horváth M., Flórián K., Heltai G., 2008. Optimization of subcritical H2O/CO2 extraction for soils, sediments and gravitation dusts. XIII. Italian-Hungarian Symposium on Spectrochemistry, Environmental Contamination and Food Safety, 2008 April 20-24, Bologna, Italy, ISSN 0393-5620, 101.

    • Search Google Scholar
    • Export Citation
  • Heltai G. , 2005. Chemical interpretation of a new sequential extraction scheme based on supercritical CO2 and subcritical H2O solvents, Bulletin of the SZIE, Gödöllő. 107-222.

  • Heltai G. , Fehér B., Percsish K., Barabás B., Fekete I., 2002. Application of sequential extraction with supercritical CO2, subcritical H2O and H2O/CO2 mixture for estimation of environmentally mobile heavy metal fractions in sediments, Anal. Bioanal. Chem. 373. 863-866.

    • Search Google Scholar
    • Export Citation
  • Heltai G. , Fekete I., Gémessi Z., Percsich K., Flórián K., Tarr Z., 1998. Environmental evaluation of a local lake chain affected by waste water by means of spectrochemical analytical methods, Microchem. J. 59. 125-135.

    • Search Google Scholar
    • Export Citation
  • Heltai G. , Percsich K., Fekete I., Barabás B., Józsa T., 2000. Speciation of waste water sediments. Microchem. J. 67. 43-51.

  • Heltai G. , Percsich K., Halász G., Jung K., Fekete I., 2005. Estimation of ecotoxicological potential of contaminated sediments based on a sequential extraction procedure with supercritical CO2 and subcritical H2O solvents. Microchem. J. 79. 231-237.

    • Search Google Scholar
    • Export Citation
  • Horváth M. , Boková V., Heltai G., Flórián K., Fekete I., 2010. Study of application of BCR sequential extraction procedure for fractionation of heavy metal content of soils, sediments, and gravitation dusts. Toxic. and Envir. Chem. 92. (3) 429-441.

    • Search Google Scholar
    • Export Citation
  • Horváth M. , Halász G., Kuconová E., Kuciková B., Fekete I., Remetiová D., Heltai GY., Flórián K., 2013. Sequential extraction studies on aquatic sediment and biofilm samples for the assessment of heavy metal mobility, Microchem. Journ. 107. 121121.

    • Search Google Scholar
    • Export Citation
  • Kaasalainen, M., Yli-Halla, M., 2003. Use of sequential extraction to assess metal partitioning in soils, Environmental Pollution 126. (2) 225233.

    • Search Google Scholar
    • Export Citation
  • Lakanen, E., Erviö, R., A 1977. Comparison of eight extractants for the determaination of plant available micronutrients in soils. Acta Agronomica Fennica. 123. 223223.

    • Search Google Scholar
    • Export Citation
  • López-Sánchez, J.F., Sahuquillo, A., Fiedler, H.D.; Rubio, R., Rauret, G.; Muntau, H., Quevauviller, P., 1998. CRM 601, a Stable Material for its Extractable Content of Heavy Metals. Analyst. 123. 16751675.

    • Search Google Scholar
    • Export Citation
  • Mchardy, J., Sawan, S.P. (ed.) 1998. Supercritical Fluid Cleaning – Fundamentals, Technology and Applications. Noyse Publications, Westwood, NJ, USA. ISBN 0815514166

    • Search Google Scholar
    • Export Citation
  • Mchugh, M.A., Krukonis, V.J., 1986. Supercritical Fluid Extraction: Principles and Practice. Butterworth-Heinemann, Stoneham, MA, USA. 1116. ISBN 9780080518176

    • Search Google Scholar
    • Export Citation
  • MSZ 20135:1999, Determination of the soluble nutrient element content of the soil, Hungarian Standards Institution, Budapest

  • MSZ 21470-50:2006, Environmental testing of soils. Determination of total and soluble toxic element, heavy metal and chromium(VI) content, Hungarian Standards Institution, Budapest

  • Ondoño, E.F., Bacchetta, G., Lallena, A.M., Navarro, F.B., Ortiz, I., Jiménez, M. N., 2017. Use of BCR sequential extraction procedures for soils and plant metal transfer predictions in contaminated mine tailings in Sardinia, Journal of Geochemical Exploration. 172. 133133.

    • Search Google Scholar
    • Export Citation
  • Pueyo, M., Mateu, J., Rigol, A., Vidal, M., López-Sánchez, J.F., Rauret, G., 2008. Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils, Environ. Poll. 152. (2) 330341.

    • Search Google Scholar
    • Export Citation
  • Rauret, G., López-Sánchez, J.F., Lück, D., Yli-Halla, M., Muntau, H., Quevauviller, PH., (2001). The certification of the extractable contents (mass fractions) of Cd, Cr, Cu, Ni, Pb and Zn in freshwater sediment following a sequential extraction procedures- BCR-701, European Commission. 1-88, ISBN 9789289407557

    • Search Google Scholar
    • Export Citation
  • Rauret, G., López-Sánchez, J.F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A., QUEVAUVILLER, PH., 1999. Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials, J. Environ. Monit. 1. 5757.

    • Search Google Scholar
    • Export Citation
  • Sahuquillo, A., Rigol, A., Rauret, G., 2003. Overview of the use of leaching extraction tests for risk assessment of trace metals in contaminated soils and sediments. Trends Anal. Chem. 22. 152159.

    • Search Google Scholar
    • Export Citation
  • Templeton, D.M., Cornelis, R., Danielsson, L.-G., Muntau, H., Van Leeuwen H. P., Lobinski, R., 2000. Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches, Pure Appl. Chem. 72. (8) 14531470.

    • Search Google Scholar
    • Export Citation
  • Tessier, A., Campbell, P. G. C., AND Bisson, M., 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51. 844-851.

    • Search Google Scholar
    • Export Citation
  • Ure, A.M., Quevauviller, P., Muntau, H., Griepink, B., 1993. Speciation of heavy-metals in soils and sediments: an account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. Int. J. Envir. Anal. Chem. 51. 135135.

    • Search Google Scholar
    • Export Citation
  • USEPA, 1994. Technical resource document: extraction and beneficiation of ores and minerals. Lead–Zinc Volume I. US Environmental Protection Agency, Office of Solid Waste, EPA 530-R-94-011, NTIS PB94-170248.

    • Search Google Scholar
    • Export Citation
  • Wai, C.M., Wang, S., 1997. Supercritical fluid extraction: metals as complexes. J. Chromatogr. A 785. 369383.

  • Zemberyová, M., Barteková, J.; Hagarová, I., 2006. The utilization of modified BCR three-step sequential extraction procedure for the fractionation of Cd, Cr, Cu, Ni, Pb and Zn in soil reference materials of different origins. Talanta 70. (5) 973978.

    • Search Google Scholar
    • Export Citation
  • Zhan, H.Y., Jiang, Y.F., Yuan, J., Hu, X.F., Nartey, O.N., Wang, B.L., 2014. Trace metal pollution in soil and wild plants from lead–zinc smelting areas in Huixian county, northwest China. J. Geochem. Explor. 149. 182188.

    • Search Google Scholar
    • Export Citation

Senior editors

Editor(s)-in-Chief: Szili-Kovács, Tibor

Technical Editor(s): Vass, Csaba

Editorial Board

  • Bidló, András (Soproni Egyetem, Erdőmérnöki Kar, Környezet- és Földtudományi Intézet, Sopron)
  • Blaskó, Lajos (Debreceni Egyetem, Agrár Kutatóintézetek és Tangazdaság, Karcagi Kutatóintézet, Karcag)
  • Buzás, István (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)
  • Dobos, Endre (Miskolci Egyetem, Természetföldrajz-Környezettan Tanszék, Miskolc)
  • Farsang, Andrea (Szegedi Tudományegyetem, Természettudományi és Informatikai Kar, Szeged)
  • Filep, Tibor (Csillagászati és Földtudományi Központ, Földrajztudományi Intézet, Budapest)
  • Fodor, Nándor (Agrártudományi Kutatóközpont, Mezőgazdasági Intézet, Martonvásár)
  • Győri, Zoltán (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Jolánkai, Márton (Magyar Agrár- és Élettudományi Egyetem, Növénytermesztési-tudományok Intézet, Gödöllő)
  • Kátai, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Lehoczky, Éva (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Makó, András (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Michéli, Erika (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Németh, Tamás (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Pásztor, László (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Ragályi, Péter (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Rajkai, Kálmán (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Rékási, Márk (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Schmidt, Rezső (Széchenyi István Egyetem, Mezőgazdaság- és Élelmiszertudományi Kar, Mosonmagyaróvár)
  • Tamás, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Tóth, Gergely (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Zoltán (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)

 

International Editorial Board

  • Blum, Winfried E. H. (Institute for Soil Research, University of Natural Resources and Life Sciences (BOKU), Wien, Austria)
  • Hofman, Georges (Department of Soil Management, Ghent University, Gent, Belgium)
  • Horn, Rainer (Institute of Plant Nutrition and Soil Science, Christian Albrechts University, Kiel, Germany)
  • Inubushi, Kazuyuki (Graduate School of Horticulture, Chiba University, Japan)
  • Kätterer, Thomas (Swedish University of Agricultural Sciences (SLU), Sweden)
  • Lichner, Ljubomir (Institute of Hydrology, Slovak Academy of Sciences, Bratislava, Slovak Republic)
  • Loch, Jakab (Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary)
  • Nemes, Attila (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Pachepsky, Yakov (Environmental Microbial and Food Safety Lab USDA, Beltsville, MD, USA)
  • Simota, Catalin Cristian (The Academy of Agricultural and Forestry Sciences, Bucharest, Romania)
  • Stolte, Jannes (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Wendroth, Ole (Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, USA)

         

Szili-Kovács, Tibor
ATK Talajtani Intézet
Herman Ottó út 15., H-1022 Budapest, Hungary
Phone: (+36 1) 212 2265
Fax: (+36 1) 485 5217
E-mail: editorial.agrokemia@atk.hu

Indexing and Abstracting Services:

  • CAB Abstracts
  • EMBiology
  • Global Health
  • SCOPUS
  • CABI

2020  
Scimago
H-index
9
Scimago
Journal Rank
0,179
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
48/73=0,7
Scopus
Cite Score Rank
Agronomy and Crop Science 278/347 (Q4)
Soil Science 108/135 (Q4)
Scopus
SNIP
0,18
Scopus
Cites
48
Scopus
Documents
6
Days from submission to acceptance 130
Days from acceptance to publication 152
Acceptance
Rate
65%

 

2019  
Scimago
H-index
9
Scimago
Journal Rank
0,204
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
49/88=0,6
Scopus
Cite Score Rank
Agronomy and Crop Science 276/334 (Q4)
Soil Science 104/126 (Q4)
Scopus
SNIP
0,423
Scopus
Cites
96
Scopus
Documents
27
Acceptance
Rate
91%

 

Agrokémia és Talajtan
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 144 EUR / 194 USD
Print + online subscription: 160 EUR / 232 USD
Subscription fee 2022 Online subsscription: 146 EUR / 198 USD
Print + online subscription: 164 EUR / 236 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Agrokémia és Talajtan
Language Hungarian, English
Size B5
Year of
Foundation
1951
Publication
Programme
2021 Volume 70
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0002-1873 (Print)
ISSN 1588-2713 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 6 0 0
Jul 2021 2 0 0
Aug 2021 6 0 0
Sep 2021 2 1 2
Oct 2021 5 0 0
Nov 2021 10 0 0
Dec 2021 5 0 0