Soil samples were collected from salt-affected soils (Solonetz) under different land uses, namely arable (SnA) and pasture (SnP), to investigate the effects of land use on microbiological [basal soil respiration (BSR), microbial biomass carbon (MBC), dehydrogenase activity (DHA) and phosphatase activity] and chemical properties [organic carbon (OC), humic ratio (E4/E6), pH, electrical conductivity (EC), ammonium nitrogen (NH4-N), nitrate nitrogen (NO3-N), available forms of phosphorus (P2O5), potassium (K2O), calcium (Ca2+), magnesium (Mg2+), sodium (Na+)] and on the moisture content.
The results showed that the two sites, SnA and SnP, were statistically different from each other for all the microbiological and chemical parameters investigated except Na+ and moisture content. Higher values of MBC (575.67 μg g-1), BSR (9.71 μg CO2 g-1 soil h-1), DHA (332.76 μg formazan g-1 day-1) and phosphatase activity (0.161 μmol PNP g-1 hr-1) were observed for the SnP soil. Great heterogeneity was found in SnP in terms of microbiological properties, whereas the SnA plots showed more homogeneous microbiological activity due to ploughing. 75.34% of variance was explained by principal component one (PC1), which significantly separated SnA and SnP, especially on the basis of soil MBC and P2O5. Moreover, it was concluded that the pasture land (SnP) was microbiologically more active than arable land (SnA) among the Hungarian salt-affected soils investigated.
Ábrahám L. , Bocskai, J. 1971. Utilisation and amelioration of saline soils. OMMI. Budapest (In Hungarian)
Arany S. 1956. Amelioration of saline soils. Mezőgazdasági Kiadó, Budapest (In Hungarian)
Balog K. , Gribovszki Z., Szabó A., Jobbágy E., Nosetto, M., Kuti L., Pásztor L., Tóth T., 2014. Effect of forest plantations on subsurface salt accumulation in lowlands with shallow groundwater. Agrokémia és Talajtan. 63. (2) 249–268. (In Hungarian)
Balota, E.L., Colozzi-Filho, A., Andrade, D.S., Dick, R.P. 2003. Microbial biomass in soils under different tillage and crop rotation systems. Biology and Fertility of Soils. 38. 15–15.
Bastida, F., Zsolnay, A., Hernández, T., García, C. 2008. Past, present and future of soil quality indices: a biological perspective. Geoderma. 147. 159–171.
Batra, L., Manna, M.C. 1997. Dehydrogenase activity and microbial biomass carbon in salt‐affected soils of semiarid and arid regions. Arid Soil Research and Rehabilitation. 11. (3) 295–303.
Bending, G.D., Turner, M.K., Jones, J.E. 2002. Interactions between crop residue and soil organic matter quality and the functional diversity of soil microbial communities. Soil Biology and Biochemistry. 34. 1073–1082.
Biró, B., Villányi, I., Köves-Péchy, K. 2002. Abundance and adaptation level of some microbes in salt-affected soils. Agrokémia és Talajtan. 51 (1-2) 99–106.
Borsodi, A. K., Micsinai, A., Rusznyák, A., Vladar, P., Kovacs, G., Toth, E. M., Marialigeti, K. 2005. Diversity of alkaliphilic and alkalitolerant bacteria cultivated from decomposing reed rhizomes in a Hungarian soda lake. Microbial Ecology. 50. 9–18.
Borsodi, A. K., Rusznyák, A., Molnár, P., Vladár, P., Reskóné, M. N., Tóth, E. M., Sipos, R., Gedeon, G., Márialigeti, K. 2007. Metabolic activity and phylogenetic diversity of reed (Phragmites australis) periphyton bacterial communities in a Hungarian shallow soda lake. Microbial Ecology. 53 (4) 612–620.
Brookes, P.C., Landman, A., Pruden, G., Jenkinson, D.S. 1985. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method for measuring microbial biomass nitrogen in soil. Soil Biology and Biochemistry. 17. 837–842.
Buzás I. 1988. Manual of Soil and Agrochemical Analysis. 2. Physico-chemical and Chemical Analytical methods for soils. Mezőgazdasági Kiadó. Budapest. Hungary. (In Hungarian)
Buzás, I. 1993. Manual of Soil and Agrochemical Analysis. 2. Physical, Water management and Mineralogical Analysis of the soil. INDA 4231. Budapest. Hungary. (In Hungarian)
Carter, M.R. 1993. Soil Sampling and Methods of Analysis. Lewis Publishers. Toronto.
Casida, L.E. JR., Klein, D.A., Santoro, T. 1964. Soil dehydrogenase activity. Soil Science. 98. 371–371.
Cheng, F., Peng, X., Zhao, P., Yuan, J., Zhong, C., Cheng, Y., Cui, C., Zhang, S. 2013. Soil microbial biomass, basal respiration and enzyme activity of main forest types in the Qinling Mountains. PLoS One. 8. e67353.
Condron, L.M., Turner, B.L., Cade-Menun, B.J. 2005. Chemistry and dynamics of soil organic phosphorus. In: Sims, T., Sharpley, A.N. (eds.). Phosphorus: Agriculture and the Environment. American Society of Agronomy Madison (Wisconsin, USA) 7.
Egner, H., Riehm, H., Domingo, W. 1960. Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden II. Chemische Extraktionsmethoden zur Phosphor- und Kaliumbestimmung. Kungl. Lantbrukshögsk. Ann. 26. 199–215.
European Commission 2007. Directorate General for Research—Sustainable Development. Global Change and Ecosystems. Catalogue of projects funded during the Sixth Framework. pp. 362–363. European Commission. Brussels. Belgium.
FAO 2006. Guidelines for Soil Description. 4th edition. FAO. Rome.
Felföldi, T., Somogyi, B., Márialigeti, K., Vörös, L. 2009. Characterization of photoautotrophic picoplankton assemblages in turbid, alkaline lakes of the Carpathian Basin (Central Europe). Journal of Limnology. 68. 385–395.
Füzy A. , Biró B., Tóth T. 2003. Correlations between plant-microbe interactions and soil properties on Hungarian saline soils Természetvédelmi Közlemények. 10. 63–69. (In Hungarian)
Füzy, A., Biró, B., Tóth, T., Hildebrandt, U., Bothe, H. 2008. Drought, but not salinity determines the apparent effectiveness of halophytes colonized by arbuscular mycorrhizal fungi. Journal of Plant Physiology. 165. 1181–1192.
Grover, M., Ali, S.Z., Sandhya, V., Rasul, A., Venkateswarlu, B. 2011. Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World Journal of Microbiology and Biotechnology. 27. 1231–1240.
Guangming, L., Xuechen, Z., Xiuping, W., Hongbo, S., Jinsong, Y., Xianping, W. 2017. Soil enzymes as indicators of saline soil fertility under various soil amendments. Agriculture, Ecosystems and Environment. 237. 274–279.
Hedo, J., Lucas-Borja, M.E., Wic-Baena, C., Andrés-Abellán, M., De Las Heras, J. 2015. Experimental site and season over-control the effect of Pinus halepensis in microbiological properties of soils under semiarid and dry conditions. J. Arid Environ. 116. 44–52.
Herke S. 1949. Amelioration of sodic-saline soils Agrokémia (5-6) 3–17. (In Hungarian)
IUSS Working Group WRB. 2015. World Reference Base for Soil Resources 2014 (updated 2015). World Soil Resources Reports 106. Food and Agriculture Organization (FAO) of the United Nations. Rome 2015.
Iwai, C.B., Oo, A.N., Topark-Ngarm B. 2012. Soil property and microbial activity in natural salt-affected soils in an alternating wet–dry tropical climate. Geoderma. 189–190. 144–152.
Jing, Y., Li, Y., Nian, J., Lin, Y. 2013. Enzymatic activity of different salt-affected soils in Tumochuan Plain. Ecology and Environmental Sciences. 9. 013.
Kandeler, E. 2007. Physiological and biochemical methods for studying soil biota and their functions. In: Paul, E.A. (ed.): Soil Microbiology, Ecology and Biochemistry. Elsevier. p. 72.
Kandele, E. 1996. Ammonium. In: Schinner, F., Öhlinger, R., Kandeler, E., Marghesin, R. (eds.): Methods in Soil Biology. Springer-Verlag. Berlin. Heidelberg. New York. pp. 406–410.
Khalif, A. A., Abdorhim, H., Bayoumi, H., Hosam, A. F., Oldal B., Kecskés M. 2005. Changes in microbe number and enzyme activity in the rhizosphere of dry bean varieties (Phaseolus vulgaris L.) in response to salt stress. Agrokémia és Talajtan. 54. (3-4) 451–464. (In Hungarian)
Kuti L. , Tóth T., Kerék B., Zöld A., Szentpétery I. 2002. Fluctuation of the groundwater level. and its consequences in the soil–parent material– groundwater system of a sodic grassland. Agrokémia és Talajtan. 51 (1-2) 253-262.
Lucas-Borja, M.E., Candel, D., Jindo, K., Moreno, J.L., Andrés, M., Bastida, F. 2011. Soil microbial community structure and activity in monospecific and mixed forest stands under Mediterranean humid conditions. Plant and Soil. 354. 359–370.
Mehlich, A. 1953. Determination of P, Ca, Mg, K, Na and NH4. North Carolina Department of Agriculture. Agronomic Division. Soil Testing Division. Publication No. 1–53.
Mucsi M. , Csontos P., Borsodi A., Krett G., Gazdag O., Szili-Kovács T. 2017. Use of the microrespiration method to analyse the metabolic activity patterns in the soil of four characteristic sodic plant associations. Agrokémia és Talajtan. 66. (1) 165–179. (In Hungarian)
Neale, S.P., Shah, Z., Adams, W.A., 1997. Changes in microbial biomass and nitrogen turnover in acidic organic soils following liming. Soil Biology and Biochemistry. 29. 1463–1463.
Page, A.L., Miller, R.H., Keeney, D.R. (eds.). 1982. Methods of Soil Analysis. Part 2 (2nd ed.). Agronomy Monograph 9. ASA and SSSA. Madison. WI. pp. 591–592.
Pouyat, R.V., Mcdonnell, M.J., Pickett, S.T. 1995. Soil characteristics of oak stands along an urban-rural land-use gradient. Journal of Environmental Quality. 24. 516–526.
Rietz, D.N. & Haynes, R.J. 2003. Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biology and Biochemistry. 35. 845–854.
Saha, S., Prakash, V., Kundu, S., Kumar, N., Mina, B.L. 2008. Soil enzymatic activity as affected by long term application of farm yard manure and mineral fertilizer under a rainfed soybean–wheat system in N-W Himalaya. European Journal of Soil Biology. 44. 309–309.
Sardinha, M., Müller, T., Schmeisky, H., Joergensen, R.G., 2003. Microbial performance in soils along a salinity gradient under acidic conditions. Applied Soil Ecology. 23. (3). 237–244.
Somogyi, B., Felföldi, T., Vanyovszki, J., Ágyi, Á., Márialigeti, K., Vörös, L. 2009. Winter bloom of picoeukaryotes in Hungarian shallow turbid soda pans and the role of light and temperature. Aquatic Ecology. 43. 735–744.
Stevenson, F. J. 1994. Humus Chemistry 2nd Edition John Wiley & Sons Inc. SUMNER, M. E. 2000. Handbook of Soil Science. CRC Press. Boca Raton.
Szabó, G., Borsodi, A., Vladár, P., Cech, G., Tóth, E., Boros, E., Márialigeti, K. 2004. Bacterological analysis of saline lakes in the Kiskunság National Park. Hidrológiai Közlöny. 84. 147–150. (In Hungarian)
Szabolcs I. & Várallyay G. 1978. Limiting factors of soil fertility in Hungary. Agrokémia és Talajtan 27. (1-2) 181–202. (In Hungarian)
Szabolcs, I. & Jassó, F. 1959. Klassification der Szikböden Ungarns. Agrokémia és Talajtan 8. 281–281. (In Hungarian)
Szendrei, G. & Tóth, T. (eds.) 2006. Salt minerals in the topsoil of saline soils in Hungary). Topographia Mineralogica Hungariae 9. Miskolc (In Hungarian)
Szili-Kovács, T., BÁRÁNY, Á., Füzy, A., Takács, T., Krett, G., Kovács, R., Borsodi, A. 2017. Analysis of the microbial metabolic activity patterns and mycorrhizal fungal colonization in the rhizosphere of three soils neighbouring sodic lakes. Agrokémia és Talajtan 66. (1) 149–164. (In Hungarian)
Tabatabai, M.A., Bremner, J.M. 1969. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biology and Biochemistry. 1. 301–301.
Tejada, M., Garcia, C., Gonzalez, J.L. & Hernandez, M.T. 2006. Use of organic amendment as a strategy for saline soil remediation: influence on the physical, chemical and biological properties of soil. Soil Biology Biochemistry. 38. 1413–1413.
Tóth T. , Kertész M., Pásztor L. 1998. New approaches in salinity/sodicity mapping in Hungary. Agrokémia és Talajtan. 47. 76–76.
Tóth T. , Kuti L., Fórizs I., Kabos S. 2001. A sófelhalmozódás tényezőinek változása a hortobágyi “Nyírőlapos” mintaterület talajainál. Agrokémia és Talajtan. 50. (3-4) 409–426.
Tóth T. , Molnár S., Balog K., Bakacsi Z. 2015. Leaching processes in saline lakes on the sand ridge of the Danube-Tisza Interfluve: the case of Lake Szappanos. Agrokémia és Talajtan. 64. (1) 73–92. (In Hungarian)
Tóth T. & Várallyay G. 2001. Variability in the soil of a sample area according to salt accumulation factors. Agrokémia és Talajtan. 50. 19–19. (In Hungarian)
Tóth, E. & Farkas, C. 2010. Effect of inter-row cultivation on soil carbon dioxide emission in a peach plantation. Agrokémia és Talajtan. 59. (1) 157–164.
Tóth, E., Farkas, C., Koós, S., Németh, T. 2009. Effect of tillage on soil carbon dioxide emission. I. Testing a laboratory method on undisturbed soil columns. Agrokémia és Talajtan. 58. (2) 215–226.
Tripathi, S., Kumari, S., Chakraborty, A., Gupta, A., Chakrabarti, K., Bandyapadhyay. B.K. 2006. Microbial biomass and its activities in saltaffected coastal soils. Biology and Fertility of Soils. 42. 273–277.
Turner B.L. , Haygard, P.M. 2005. Phosphatase activity in temperate pasture soils: Potential regulation of labile organic phosphorus turnover by phosphodiesterase activity. Science of the Total Environment. 344. 27–36.
USDA (United States Department of Agriculture) 1954. Diagnosis and Improvement of Saline and Alkali Soils. Agriculture Handbook No. 60. United States Salinity Laboratory. Riverside. CA.
Vance, E.D., Brookes, P.C., Jenkinson, D.S. 1987. An extraction method for measuring soil microbial biomass C. Soil Biology and Biochemistry. 19. 703–707.
Várallyay G. 1999. Salinization / alkalinzation/sodification processes in the Carpathian Basin. Agrokémia és Talajtan. 48. 399–399. (In Hungarian)
Walkley, A. & Black, I.A. 1934. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science. 37. (1) 29–38.
Yuan, B., Li, Z., Liu, H., Gao, M., Zhang, Y. 2007. Microbial biomass and activity in salt-affected soil under arid condition. Applied Soil Ecology. 35. 319–328.