View More View Less
  • 1 University of Debrecen, Hungary
  • | 2 Humboldt-Universität zu Berlin, Germany
  • | 3 University of Debrecen, Hungary
Restricted access

The size of the arable land is constantly decreasing all over the world due to severe anthropogenic disorders. Plant production therefore has to be adapted to changing environmental conditions along with the proper selection of crop varieties and the application of sustainable environmental technologies which also consider economic aspects. The investigations were carried out in the Westsik long-term fertilization experiment near Nyíregyháza, East Hungary, which was set up in 1929 (89 years ago). Alternative forms of nutrient supplies (A) (green manure, straw with and without fermentation, organic fertilizer with and without inorganic fertilizer supplements) were used in different crop rotations. The test plant was potato (Solanum tuberosum L.) and the soil type sand with a low humus content (Arenosols). A further long-term experiment is located on calcareous chernozem soil (Chernozems) in Debrecen (set up in 1983, 35 years ago). In one part of this experiment, organic farming (OF) has been carried out with a pea, winter wheat and maize crop rotation for over 15 years with no inorganic fertilization. In another block in this experiment, changes in soil properties as a result of the medium and high doses of fertilizers applied in intensive farming (I) were evaluated with a maize (Zea mays L.) monoculture as the test plant.

The results obtained with alternative nutrient supplies (green manure, fermented and unfermented straw, farmyard manure, fertilization) proved that the soil organic carbon content increased to varying degrees in humus-poor, acidic sand soil. The organic matter content of the soils increased in response to the treatments, contributing to a significant enhancement in soil microbial parameters (MBC, saccharase, dehydrogenase and phosphatase enzyme activities).

The carbon dioxide production and saccharase enzyme activity in organic plots (OF) were significantly lower than in intensively farmed (I) soils. At the same time, in the case of organic farming (OF) the microbial biomass carbon, phosphatase and dehydrogenase activity were significantly higher in OF plots than in I plots. Compared to the control soil, MBC was 7-8 times higher in organic plots and 1.3-3.8 times higher in intensive plots.

Organic farming on chernozem soil generally resulted in higher microbial activity (MBC, phosphatase, saccharase and dehydrogenase enzyme activity) than in either intensively farmed chernozem or in the case of alternative farming (A) on sandy soil.

  • Balezentiene, L., Klimas, E. 2009. Effect of organic and mineral fertilizers and land management on soil enzyme activities. Agronomy Research 7. (Special issue I) 191-197. p.

    • Search Google Scholar
    • Export Citation
  • Biró, B. 2005. The soil as a living substance. In: The importance and value of soils in the 21st century. (eds. Stefanovits, P. & Michéli E.). (In Hungarian) MTA, Budapest. p. 141169.

    • Search Google Scholar
    • Export Citation
  • Bolton, H., Elliott, L.F, Papendick, R. I., Bezdicek, D. F. 1985. Soil microbial biomass and selected soil enzyme activities: effect of fertilization and cropping practices. Soil Biology and Biochemistry. 17. (3) 297302. p.

    • Search Google Scholar
    • Export Citation
  • Buzás, I. (ed.) 1988. Methods of Soil and Agricultural Chemistry Analysis 2. Physico-chemical and Chemical Methods of Soil Analysis. (In Hungarian) Mezőgazdasági Kiadó, Budapest. pp. 9093.

    • Search Google Scholar
    • Export Citation
  • Füleky, G., Rajkainé Végh, K. 1999. Nutrient supplying ability of the soil. (ed. G. Füleky). In: soil-nutrient-management. (In Hungarian) Mezőgazdasági Kiadó, Budapest. p. 112120.

    • Search Google Scholar
    • Export Citation
  • Frankerberger, W.T., Johanson, J.B. 1983. Method of measuring invertase activity in soils. Plant and Soil. 74. 301301.

  • Geisseler, D., Scow, K.M. 2014. Long-term effects of mineral fertilizers on soil microorganisms. A review. Soil Biology and Biochemistry. 75. 5454.

    • Search Google Scholar
    • Export Citation
  • Janusauskaite, D., Arlauskiene, A., Maikteniene, S. 2013. Soil mineral nitrogen and microbial parameters as influenced by catch crops and straw management. Zemdirbyste Agriculture, 100 (1) 918.

    • Search Google Scholar
    • Export Citation
  • Kátai, J. 1992. Correlation among the physical, chemical characteristics and microbiological activities of some soil types. In: Functioning and Dynamics of Perturbed Ecosystems. eds. Bellan, D., Bonin, G., Emig, C. Lavoisier Publishing, Paris. p. 137158.

    • Search Google Scholar
    • Export Citation
  • Kátai, J., Lazányi, J., Veres, E. 1999. Investigation of soil microbiological parameters in Westsik long-term field experiment. In: Tiszántúli Mezőgazdasági Tudományos Napok. (In Hungarian). Debrecen, 1999. okt. 28-29. p. 175184.

    • Search Google Scholar
    • Export Citation
  • Kátai, J. 2000. Comparative investigations on soil microbiological parameters in a long-term fertilizer experiment. For the 80th anniversary of the birth of Prof. Ernő Bocz. (In Hungarian). Debrecen. p. 5163.

    • Search Google Scholar
    • Export Citation
  • Kátai, J., ZSUPOSNÉ OLÁH, Á., Sándor, Z., Tállai, M. 2014. Comparison of soil parameters of the carbon and nitrogen cycles in a long-term fertilization field experiment. Agrokémia és Talajtan. 63. 129129.

    • Search Google Scholar
    • Export Citation
  • Liu, E., Yan, C., Mei, X., Zhang, Y. Fan, T. 2013. Long–term effect of manure and fertilizer on soil organic carbon pools in dryland farming in Northwest China. PlosOne. https://doi.org/10.1371/journal.pone.0056536

    • Search Google Scholar
    • Export Citation
  • Loch, J., Nosticzius, Á. 2004. Agro-chemistry and Plant Protection Chemistry. Mezőgazda Kiadó, Budapest. 19-22, 114.

  • Losakov, V. G., Emcev, V.T., Nicé, L. K., Ivanova, SZ. F., Rogova, T. A. 1986. Biologicseszkaja aktivnoszt pocsvy v szpecinivnogo sziderata i szolomy v kacsesztve udobrenij. Izv. TSZHA. Moszkva 4. pp. 1017.

    • Search Google Scholar
    • Export Citation
  • Lukácsné Veres E. Zsuposné Oláh Á. 2008. Mészlepedékes csernozjom talaj fontosabb paramétereinek alakulása hagyományos és ökológiai gazdálkodási rendszerekben. Talajvédelem különszáma (ed.: Simon L.) 455464. p.

    • Search Google Scholar
    • Export Citation
  • Müller, G. 1991. Soil microbiological aspects of agroecology and intensive agricultural production. (In Hungarian) Agrokémia és Talajtan. 40. 263263.

    • Search Google Scholar
    • Export Citation
  • Mershi, V. W. 1996. Dehydrogenase activity with the substrate INT. In: Schinner, F., Öhlinger, R., Kandeler, E., Margesin, R. (eds.) Methods in Soil Biology. Springer-Verlag Berlin – Heidelberg. 243245.

    • Search Google Scholar
    • Export Citation
  • Öhlinger, R., Kandeler, E., Margesin, R. (eds.) 1996. Methods in Soil Biology. Springer-Verlag Berlin Heidelberg. pp. 20-26., 32-36

  • Piotrowska-Dlugosz, A., Wilczewski, E. 2015. Influences of catch crop and its corporation time on soil carbon and carbon-related enzymes. Pedosphere. 25. (4) 569579. p.

    • Search Google Scholar
    • Export Citation
  • Powlson, D. S., Johnston, A. E. 1994. Long-term Field Experiments: their Importance in Understanding Sustainable Land Use. Soil Resilience and Sustainable Land Use. CAB International. 367-394. p.

    • Search Google Scholar
    • Export Citation
  • Sárdi, K. 2011. Soil-nutrient management. Debreceni Egyetem, Nyugat- Magyarországi Egyetem, Pannon Egyetem (on-line teaching material). (In Hungarian).

    • Search Google Scholar
    • Export Citation
  • Schrama, M., De Haan, J.J., Kroonen, M, Verstegen, H., Van Der Putten, W. H. 2018. Crop yield gap and stability in organic and conventional farming systems. Agriculture, Ecosystems and Environment. 256. 123123.

    • Search Google Scholar
    • Export Citation
  • Simon, T., Czako, A. 2014. Influence of long-term application of organic and inorganic fertilizers on soil properties. Plant Soil and Environment. 60. 314-319.

    • Search Google Scholar
    • Export Citation
  • Stevlívková, T., Javoreková, S., Vjatráková, J. 2002. Soil biological activity within integrated and ecological management of soil. Agrártudományi Közlemények 1. Acta Agraria Debreceniensis. Debrecen. 4752. p.

    • Search Google Scholar
    • Export Citation
  • Székely, Á., Schlick, B., Szabó, T. 1960. On the photometric and colorimetric determination of organic carbon. (In Hungarian). Agrokémia és Talajtan, 9. 111111.

    • Search Google Scholar
    • Export Citation
  • Szegi, J. 1979. Soil Microbiological Methods. (In Hungarian) Mezőgazda Kiadó, Budapest. pp. 250256.

  • Szili-Kovács, T., Zsuposné Oláh, Á., Kátai, J., Villányi, I., Takács, T. 2009. Correlation between biological and chemical properties in soils from long-term experiments. Agrokémia és Talajtan (In Hungarian). 58. 309309.

    • Search Google Scholar
    • Export Citation
  • Vance, E.D., Brookes, P.C., Jenkinson, D.S. 1987. An extraction method for measuring soil microbial biomass-C. Soil Biol. Biochem. 19. 703703.

    • Search Google Scholar
    • Export Citation
  • Zhao, B., Chen, J., Zhang, J., Xin, X., Hao, X. 2013. How different long-term fertilization strategies influence crop yield and soil properties in a maize field in the North China Plain. Journal of Plant Nutrition and Soil Science. 176. 99-109.

    • Search Google Scholar
    • Export Citation

Senior editors

Editor(s)-in-Chief: Szili-Kovács, Tibor

Technical Editor(s): Vass, Csaba

Editorial Board

  • Bidló, András (Soproni Egyetem, Erdőmérnöki Kar, Környezet- és Földtudományi Intézet, Sopron)
  • Blaskó, Lajos (Debreceni Egyetem, Agrár Kutatóintézetek és Tangazdaság, Karcagi Kutatóintézet, Karcag)
  • Buzás, István (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)
  • Dobos, Endre (Miskolci Egyetem, Természetföldrajz-Környezettan Tanszék, Miskolc)
  • Farsang, Andrea (Szegedi Tudományegyetem, Természettudományi és Informatikai Kar, Szeged)
  • Filep, Tibor (Csillagászati és Földtudományi Központ, Földrajztudományi Intézet, Budapest)
  • Fodor, Nándor (Agrártudományi Kutatóközpont, Mezőgazdasági Intézet, Martonvásár)
  • Győri, Zoltán (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Jolánkai, Márton (Magyar Agrár- és Élettudományi Egyetem, Növénytermesztési-tudományok Intézet, Gödöllő)
  • Kátai, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Lehoczky, Éva (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Makó, András (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Michéli, Erika (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Németh, Tamás (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Pásztor, László (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Ragályi, Péter (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Rajkai, Kálmán (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Rékási, Márk (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Schmidt, Rezső (Széchenyi István Egyetem, Mezőgazdaság- és Élelmiszertudományi Kar, Mosonmagyaróvár)
  • Tamás, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Tóth, Gergely (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Zoltán (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)

 

International Editorial Board

  • Blum, Winfried E. H. (Institute for Soil Research, University of Natural Resources and Life Sciences (BOKU), Wien, Austria)
  • Hofman, Georges (Department of Soil Management, Ghent University, Gent, Belgium)
  • Horn, Rainer (Institute of Plant Nutrition and Soil Science, Christian Albrechts University, Kiel, Germany)
  • Inubushi, Kazuyuki (Graduate School of Horticulture, Chiba University, Japan)
  • Kätterer, Thomas (Swedish University of Agricultural Sciences (SLU), Sweden)
  • Lichner, Ljubomir (Institute of Hydrology, Slovak Academy of Sciences, Bratislava, Slovak Republic)
  • Loch, Jakab (Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary)
  • Nemes, Attila (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Pachepsky, Yakov (Environmental Microbial and Food Safety Lab USDA, Beltsville, MD, USA)
  • Simota, Catalin Cristian (The Academy of Agricultural and Forestry Sciences, Bucharest, Romania)
  • Stolte, Jannes (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Wendroth, Ole (Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, USA)

         

Szili-Kovács, Tibor
ATK Talajtani Intézet
Herman Ottó út 15., H-1022 Budapest, Hungary
Phone: (+36 1) 212 2265
Fax: (+36 1) 485 5217
E-mail: editorial.agrokemia@atk.hu

Indexing and Abstracting Services:

  • CAB Abstracts
  • EMBiology
  • Global Health
  • SCOPUS
  • CABI

2021  
Web of Science  
Total Cites
WoS
not indexed
Journal Impact Factor not indexed
Rank by Impact Factor

not indexed

Impact Factor
without
Journal Self Cites
not indexed
5 Year
Impact Factor
not indexed
Journal Citation Indicator not indexed
Rank by Journal Citation Indicator

not indexed

Scimago  
Scimago
H-index
10
Scimago
Journal Rank
0,138
Scimago Quartile Score Agronomy and Crop Science (Q4)
Soil Science (Q4)
Scopus  
Scopus
Cite Score
0,8
Scopus
CIte Score Rank
Agronomy and Crop Science 290/370 (Q4)
Soil Science 118/145 (Q4)
Scopus
SNIP
0,077

2020  
Scimago
H-index
9
Scimago
Journal Rank
0,179
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
48/73=0,7
Scopus
Cite Score Rank
Agronomy and Crop Science 278/347 (Q4)
Soil Science 108/135 (Q4)
Scopus
SNIP
0,18
Scopus
Cites
48
Scopus
Documents
6
Days from submission to acceptance 130
Days from acceptance to publication 152
Acceptance
Rate
65%

 

2019  
Scimago
H-index
9
Scimago
Journal Rank
0,204
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
49/88=0,6
Scopus
Cite Score Rank
Agronomy and Crop Science 276/334 (Q4)
Soil Science 104/126 (Q4)
Scopus
SNIP
0,423
Scopus
Cites
96
Scopus
Documents
27
Acceptance
Rate
91%

 

Agrokémia és Talajtan
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2022 Online subsscription: 146 EUR / 198 USD
Print + online subscription: 164 EUR / 236 USD
Subscription fee 2023 Online subsscription: 150 EUR / 198 USD
Print + online subscription: 170 EUR / 236 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Agrokémia és Talajtan
Language Hungarian, English
Size B5
Year of
Foundation
1951
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0002-1873 (Print)
ISSN 1588-2713 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2022 2 0 0
Mar 2022 4 0 0
Apr 2022 0 0 0
May 2022 4 6 6
Jun 2022 3 1 1
Jul 2022 4 0 0
Aug 2022 1 0 0