View More View Less
  • 1 University of Debrecen, Hungary
  • 2 Humboldt-Universität zu Berlin, Germany
  • 3 University of Debrecen, Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $184.00

The size of the arable land is constantly decreasing all over the world due to severe anthropogenic disorders. Plant production therefore has to be adapted to changing environmental conditions along with the proper selection of crop varieties and the application of sustainable environmental technologies which also consider economic aspects. The investigations were carried out in the Westsik long-term fertilization experiment near Nyíregyháza, East Hungary, which was set up in 1929 (89 years ago). Alternative forms of nutrient supplies (A) (green manure, straw with and without fermentation, organic fertilizer with and without inorganic fertilizer supplements) were used in different crop rotations. The test plant was potato (Solanum tuberosum L.) and the soil type sand with a low humus content (Arenosols). A further long-term experiment is located on calcareous chernozem soil (Chernozems) in Debrecen (set up in 1983, 35 years ago). In one part of this experiment, organic farming (OF) has been carried out with a pea, winter wheat and maize crop rotation for over 15 years with no inorganic fertilization. In another block in this experiment, changes in soil properties as a result of the medium and high doses of fertilizers applied in intensive farming (I) were evaluated with a maize (Zea mays L.) monoculture as the test plant.

The results obtained with alternative nutrient supplies (green manure, fermented and unfermented straw, farmyard manure, fertilization) proved that the soil organic carbon content increased to varying degrees in humus-poor, acidic sand soil. The organic matter content of the soils increased in response to the treatments, contributing to a significant enhancement in soil microbial parameters (MBC, saccharase, dehydrogenase and phosphatase enzyme activities).

The carbon dioxide production and saccharase enzyme activity in organic plots (OF) were significantly lower than in intensively farmed (I) soils. At the same time, in the case of organic farming (OF) the microbial biomass carbon, phosphatase and dehydrogenase activity were significantly higher in OF plots than in I plots. Compared to the control soil, MBC was 7-8 times higher in organic plots and 1.3-3.8 times higher in intensive plots.

Organic farming on chernozem soil generally resulted in higher microbial activity (MBC, phosphatase, saccharase and dehydrogenase enzyme activity) than in either intensively farmed chernozem or in the case of alternative farming (A) on sandy soil.

  • Balezentiene, L., Klimas, E. 2009. Effect of organic and mineral fertilizers and land management on soil enzyme activities. Agronomy Research 7. (Special issue I) 191-197. p.

    • Search Google Scholar
    • Export Citation
  • Biró, B. 2005. The soil as a living substance. In: The importance and value of soils in the 21st century. (eds. Stefanovits, P. & Michéli E.). (In Hungarian) MTA, Budapest. p. 141169.

    • Search Google Scholar
    • Export Citation
  • Bolton, H., Elliott, L.F, Papendick, R. I., Bezdicek, D. F. 1985. Soil microbial biomass and selected soil enzyme activities: effect of fertilization and cropping practices. Soil Biology and Biochemistry. 17. (3) 297302. p.

    • Search Google Scholar
    • Export Citation
  • Buzás, I. (ed.) 1988. Methods of Soil and Agricultural Chemistry Analysis 2. Physico-chemical and Chemical Methods of Soil Analysis. (In Hungarian) Mezőgazdasági Kiadó, Budapest. pp. 9093.

    • Search Google Scholar
    • Export Citation
  • Füleky, G., Rajkainé Végh, K. 1999. Nutrient supplying ability of the soil. (ed. G. Füleky). In: soil-nutrient-management. (In Hungarian) Mezőgazdasági Kiadó, Budapest. p. 112120.

    • Search Google Scholar
    • Export Citation
  • Frankerberger, W.T., Johanson, J.B. 1983. Method of measuring invertase activity in soils. Plant and Soil. 74. 301301.

  • Geisseler, D., Scow, K.M. 2014. Long-term effects of mineral fertilizers on soil microorganisms. A review. Soil Biology and Biochemistry. 75. 5454.

    • Search Google Scholar
    • Export Citation
  • Janusauskaite, D., Arlauskiene, A., Maikteniene, S. 2013. Soil mineral nitrogen and microbial parameters as influenced by catch crops and straw management. Zemdirbyste Agriculture, 100 (1) 918.

    • Search Google Scholar
    • Export Citation
  • Kátai, J. 1992. Correlation among the physical, chemical characteristics and microbiological activities of some soil types. In: Functioning and Dynamics of Perturbed Ecosystems. eds. Bellan, D., Bonin, G., Emig, C. Lavoisier Publishing, Paris. p. 137158.

    • Search Google Scholar
    • Export Citation
  • Kátai, J., Lazányi, J., Veres, E. 1999. Investigation of soil microbiological parameters in Westsik long-term field experiment. In: Tiszántúli Mezőgazdasági Tudományos Napok. (In Hungarian). Debrecen, 1999. okt. 28-29. p. 175184.

    • Search Google Scholar
    • Export Citation
  • Kátai, J. 2000. Comparative investigations on soil microbiological parameters in a long-term fertilizer experiment. For the 80th anniversary of the birth of Prof. Ernő Bocz. (In Hungarian). Debrecen. p. 5163.

    • Search Google Scholar
    • Export Citation
  • Kátai, J., ZSUPOSNÉ OLÁH, Á., Sándor, Z., Tállai, M. 2014. Comparison of soil parameters of the carbon and nitrogen cycles in a long-term fertilization field experiment. Agrokémia és Talajtan. 63. 129129.

    • Search Google Scholar
    • Export Citation
  • Liu, E., Yan, C., Mei, X., Zhang, Y. Fan, T. 2013. Long–term effect of manure and fertilizer on soil organic carbon pools in dryland farming in Northwest China. PlosOne. https://doi.org/10.1371/journal.pone.0056536

    • Search Google Scholar
    • Export Citation
  • Loch, J., Nosticzius, Á. 2004. Agro-chemistry and Plant Protection Chemistry. Mezőgazda Kiadó, Budapest. 19-22, 114.

  • Losakov, V. G., Emcev, V.T., Nicé, L. K., Ivanova, SZ. F., Rogova, T. A. 1986. Biologicseszkaja aktivnoszt pocsvy v szpecinivnogo sziderata i szolomy v kacsesztve udobrenij. Izv. TSZHA. Moszkva 4. pp. 1017.

    • Search Google Scholar
    • Export Citation
  • Lukácsné Veres E. Zsuposné Oláh Á. 2008. Mészlepedékes csernozjom talaj fontosabb paramétereinek alakulása hagyományos és ökológiai gazdálkodási rendszerekben. Talajvédelem különszáma (ed.: Simon L.) 455464. p.

    • Search Google Scholar
    • Export Citation
  • Müller, G. 1991. Soil microbiological aspects of agroecology and intensive agricultural production. (In Hungarian) Agrokémia és Talajtan. 40. 263263.

    • Search Google Scholar
    • Export Citation
  • Mershi, V. W. 1996. Dehydrogenase activity with the substrate INT. In: Schinner, F., Öhlinger, R., Kandeler, E., Margesin, R. (eds.) Methods in Soil Biology. Springer-Verlag Berlin – Heidelberg. 243245.

    • Search Google Scholar
    • Export Citation
  • Öhlinger, R., Kandeler, E., Margesin, R. (eds.) 1996. Methods in Soil Biology. Springer-Verlag Berlin Heidelberg. pp. 20-26., 32-36

  • Piotrowska-Dlugosz, A., Wilczewski, E. 2015. Influences of catch crop and its corporation time on soil carbon and carbon-related enzymes. Pedosphere. 25. (4) 569579. p.

    • Search Google Scholar
    • Export Citation
  • Powlson, D. S., Johnston, A. E. 1994. Long-term Field Experiments: their Importance in Understanding Sustainable Land Use. Soil Resilience and Sustainable Land Use. CAB International. 367-394. p.

    • Search Google Scholar
    • Export Citation
  • Sárdi, K. 2011. Soil-nutrient management. Debreceni Egyetem, Nyugat- Magyarországi Egyetem, Pannon Egyetem (on-line teaching material). (In Hungarian).

    • Search Google Scholar
    • Export Citation
  • Schrama, M., De Haan, J.J., Kroonen, M, Verstegen, H., Van Der Putten, W. H. 2018. Crop yield gap and stability in organic and conventional farming systems. Agriculture, Ecosystems and Environment. 256. 123123.

    • Search Google Scholar
    • Export Citation
  • Simon, T., Czako, A. 2014. Influence of long-term application of organic and inorganic fertilizers on soil properties. Plant Soil and Environment. 60. 314-319.

    • Search Google Scholar
    • Export Citation
  • Stevlívková, T., Javoreková, S., Vjatráková, J. 2002. Soil biological activity within integrated and ecological management of soil. Agrártudományi Közlemények 1. Acta Agraria Debreceniensis. Debrecen. 4752. p.

    • Search Google Scholar
    • Export Citation
  • Székely, Á., Schlick, B., Szabó, T. 1960. On the photometric and colorimetric determination of organic carbon. (In Hungarian). Agrokémia és Talajtan, 9. 111111.

    • Search Google Scholar
    • Export Citation
  • Szegi, J. 1979. Soil Microbiological Methods. (In Hungarian) Mezőgazda Kiadó, Budapest. pp. 250256.

  • Szili-Kovács, T., Zsuposné Oláh, Á., Kátai, J., Villányi, I., Takács, T. 2009. Correlation between biological and chemical properties in soils from long-term experiments. Agrokémia és Talajtan (In Hungarian). 58. 309309.

    • Search Google Scholar
    • Export Citation
  • Vance, E.D., Brookes, P.C., Jenkinson, D.S. 1987. An extraction method for measuring soil microbial biomass-C. Soil Biol. Biochem. 19. 703703.

    • Search Google Scholar
    • Export Citation
  • Zhao, B., Chen, J., Zhang, J., Xin, X., Hao, X. 2013. How different long-term fertilization strategies influence crop yield and soil properties in a maize field in the North China Plain. Journal of Plant Nutrition and Soil Science. 176. 99-109.

    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2020 0 4 0
Jul 2020 38 8 0
Aug 2020 7 0 0
Sep 2020 2 3 3
Oct 2020 9 0 0
Nov 2020 6 2 0
Dec 2020 0 0 0