A small-plot long-term field fertilization experiment was set up in 2011 with willow (Salix triandra x Salix viminalis ’Inger’) grown as an energy crop in Nyíregyháza, Hungary. The brown forest soil was treated three times (in June 2011, May 2013, May 2016) with municipal biocompost (MBC), municipal sewage sludge compost (MSSC) or willow ash (WA), and twice (June 2011, May 2013) with rhyolite tuff (RT). In late May – early June 2016 urea (U) and sulphuric urea (SU) fertilizers were also applied to the soil as top-dressing (TD). These fertilizers and amendments were also applied to the soil in 2016 in the combinations; MBC+SU, RT+SU, WA+SU and MSSC+WA. All the treatments were repeated four times. In July 2016 the highest nitrogen concentrations in willow leaves were measured in the U (3.47 m/m%) and SU (3.01 m/m%) treatments, and these values were significantly higher than the control (2.46 m/m%). An excess of nitrogen considerably reduced the Zn uptake of the leaves, with values of 39.5 μg g-1 in the U treatment, 53.4 μg g-1 in the SU treatment, and 63.5 μg g-1 in the control. All other amendments or TDs, except for WA, enhanced the specific potassium concentrations in willow leaves compared to the control. No significant quantities of toxic elements (As, Ba, Cd, Pb) were transported from soil amendments or TDs to the willow leaves. In July 2016 the most intensive leaf chlorophyll fluorescence was observed in the MSSC and MSSC+WA treatments.
Bernardini, A., Salvatori, E., Di Re, S., Fusaro, L., Nervo, G., Manes, F., 2016. Natural and commercial Salix clones differ in their ecophysiological response to Zn stress. Photosynthetica. 54. (1) 56–64.
Berndes, G., Fredrikson, F., & Börjesson, P., 2004. Cadmium accumulation and Salix-based phytoextraction on arable land in Sweden. Agriculture, Ecosystems & Environment. 103. (1) 207–223.
Blaskó, L. , 2008. Cultivation of energy plants, site suitability, availability (in Hungarian). In: Renewable Agriculture. (ed.: Chlepkó, T.). 167–207. Magyar Katolikus Rádió. Budapest.
Dickinson, N.M. & Pulford, I.D., 2005. Cadmium phytoextraction using shortrotation coppice Salix: the evidence trail. Environ. Int. 31. (4) 609–613.
Dimitriou, I., Eriksson, J., Adler, A., Aronsson, P., & Verwijst, T., 2006. Fate of heavy metals after application of sewage sludge and wood-ash mixtures to short-rotation willow coppice. Environ. Pollut. 142. (1) 160–169.
Graham, R. L., Wright, L. L., & Turhollow, A. F.., 1992. The potential for short-rotation woody crops to reduce U.S.. CO2 emissions. Clim. Change. 22. (3) 223–238.
Gyuricza, C., Nagy, L., Ujj, A., Miko, P., & Alexa, L., 2008. The impact of composts on the heavy metal content of the soil and plants in energy willow plantations (Salix sp.). Cereal Res. Commun. 36. (Supplement 5) 279–282.
Gyuricza, C. 2011. Cultivation of woody energy crops (5.). Plant nutrition in energy plantations (in Hungarian). Agrofórum. March 2011. 92–96.
Kabata-Pendias, A. & Pendias, H., 2001. Trace Elements in Soils and Plants (3rd edition). CRC Press LLC. Boca Raton, London, New York, Washington D.C.
Merilo, E., Heinsoo, K., Kull, O., Söderbergh, I., Lundmark, T., & Koppel, A., 2006. Leaf photosynthetic properties in a willow (Salix viminalis and Salix dasyclados) plantation in response to fertilization. Eur. J. Forest Res. 125. (2) 93–100.
Park, B. B., Yanai, R. D., Sahm, J. M., Lee, D. K., & Abrahamson, L. P., 2005. Wood ash effects on plant and soil in a willow bioenergy plantation. Biomass Bioenergy. 28. (4) 355–365.
Pulford, I.D. & Dickinson, N.M., 2006. Phytoremediation technologies using trees. In: Trace Elements in the Environment. Biogeochemistry, Biotechnology, and Bioremediation. (eds.: Prasad, M.N.V., Sajwan, K.S., Naidu, R.). 383–403. CRC Press. Taylor and Francis Group. Boca Raton. Florida.
Sevel, L., Nord-Larsen, T., Ingerslev, M., Jørgensen, U., & Raulundrasmussen, K., 2014a. Fertilization of SRC willow, I: Biomass production response. Bioenerg. Res. 7. 319–328.
Sevel, L., Ingerslev, M., Nord-Larsen, T., Jørgensen, U., Holm, P. E., Schelde, K., & Raulund-Rasmussen, K., 2014b. Fertilization of SRC willow, II: Leaching and element balances. Bioenerg. Res. 7. 338–352.
Shah, F. U. R., Ahmad, N., Masood, K. R., & Peralta-Videa, J. R., 2010. Heavy metal toxicity in plants. In: Plant Adaptation and Phytoremediation. (eds.: Ashraf, M., Ahmad, M. S. A., & Ozturk, M.) 71–97, Springer Science+Business Media B. V.
Simon, L. (ed.). 2011. Biomass utilisation for energy production in Észak-Alföld Region (Hungary) (in Hungarian and English). Bessenyei Book Publisher. Nyíregyháza (Hungary). 1–114.
Simon, L., Vincze, G., Varga, C., Szabó, B., & Koncz, J., 2012a. Passive phytoextraction of toxic elements from sewage sludge compost by Salix viminalis energy plants. Acta Phytopath. Entomol. Hung. 47. (2) 285–291.
Simon L. Szabó B. , Vincze G., Varga C., Szabó M., Koncz J., 2012b. Effect of ammonium nitrate fertilizer and soil additives on the mineral nutrition of energy willow (Salix viminalis L.) energy plants (in Hungarian). In: 1st Soil Science, Water Management and Crop Science Day. ‘Soil-Water-Plant Relationship in Plant Production Space’. Debrecen, Hungary. November 23, 2012. (ed.: Lehoczky É.). 127–130. Szent István University Publisher. Gödöllő.
Simon, L., Szabó, B., Szabó, M., Vincze, GY., Varga, C., Uri, Z., & Koncz, J., 2013a. Effect of various soil amendments on the mineral nutrition of Salix viminalis and Arundo donax energy crops. Eur. Chem. Bull. 2. (1) 18–21.
Simon, L. Makádi, M., Vincze, G., Szabó, B., Szabó, M., Aranyos, T., 2013b. Impact of ammonium nitrate and rhyolite tuff soil application on the photosynthesis and growth of energy willow. In: International Multidisciplinary Conference. 10th edition. May 22-24, 2013. Baia Mare, Romania – Nyíregyháza, Hungary. (eds.: Ungureanu, N., Cotetiu, R., Sikolya, L., Páy, G.). Scientific Bulletin, Serie C, Fascicle: Mechanics, Tribology, Machine Manufacturing Technology. 143–146. Bessenyei Book Publisher. Nyíregyháza (Hungary).
Simon L. Szabó M. , Vincze G., Uri Z., Irinyiné Oláh K., Makádi M., Vígh S., 2015. Examination of nutritional supply of energy and arable crops, with particular reference to the combined effect of nitrogen fertilizers, biowastes and soil additives (in Hungarian). Research Final Report prepared for Nitrogénművek Vegyipari Co. (Pétfürdő, Hungary) on behalf of Nyír-Inno- Spin Ltd. (Nyíregyháza, Hungary). College of Nyíregyháza. 1–123. (manuscript).
Simon L. Vincze G. , Uri Z., Irinyiné Oláh K., Vígh S., Makádi M., Aranyos T., Zsombik L., 2016. Long-term open-field fertilization experiment with energy willow (Salix sp.) − experiences of the first 5 years (in Hungarian). Növényterm. 65. (2) 59–76.
Simon L. , Uri Z., Vincze G., Irinyiné Oláh K., Vígh S., 2017. Impact of artificial fertilizers, biowastes and mineral fertilizers on yield parameters of energy willow (Salix sp.) (in Hungarian). In: Indigenous and Landscape Varieties − Ecological Products − Healthy Nutrition − Rural Development Conference. University of Nyíregyháza, Nyíregyháza October 5-7. 2016. (ed. C. Tóth). Proceedings of the Conference. Publisher: Technical and Agricultural Institute of the University of Nyíregyháza, Nyíregyháza, pp. 63–73. (ISBN 978-615-5545-69-6).
Smart, B.L. & Cameron, K.D., 2012. Shrub willow. In: Handbook of Bioenergy Crop Plants. (eds.: Kole, C., Joshi, C. P. & Shonnard, D.R.) 687–708. CRC Press. Boca Raton, London, New York.
Utmazian, M. N. D. S., Wieshammer, G., Vega, R., & Wenzel, W. W., 2007. Hydroponic screening for metal resistance and accumulation of cadmium and zinc in twenty clones of willows and poplars. Environ. Pollut. 148. (1) 155–165.
Vysloužilová, M., Tlustoš, P. & Száková, J., 2003. Cadmium and zinc phytoextraction of seven clones of Salix spp. planted on heavy metal contaminated soils. Plant Soil Environ. 49. (12) 542–547.
Weih, M. & RÖNNBERG-WÄSTLJUNG, A-N., 2007. Shoot biomass growth is related to the vertical leaf nitrogen gradient in Salix canopies. Tree Physiol. 27. (11) 1551–1559.
WIKIPEDIA CONTRIBUTORS, 2018a. Chlorophyll fluorescence. In Wikipedia, The Free Encyclopedia. Retrieved 12:15, May 9, 2018, from https://en.wikipedia.org/w/index.php?title=Chlorophyll_fluorescence&oldid=8 25282258
WIKIPEDIA CONTRIBUTORS, 2018b. Plant stress measurement. In Wikipedia, The Free Encyclopedia. Retrieved 12:12, May 9, 2018, from https://en.wikipedia.org/w/index.php?title=Plant_stress_measurement&oldid= 814796698
Żurek, G., Rybka, K., Pogrzeba, M., Krzyżak, J., & Prokopiuk, K., 2014. Chlorophyll a fluorescence in evaluation of the effect of heavy metal soil contamination on perennial grasses. PLoS One. 9. (3) e91475.