View More View Less
  • 1 Mikrobiológiai Tanszék, Budapest
  • 2 MTA, ATK, Talajtani és Agrokémiai Intézet, Budapest
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $184.00

E tanulmány célja egy martonvásári hosszútávú tartamkísérlet trágyázás nélkül művelt kukorica monokultúra talajában fellelhető baktériumközösségek filogenetikai diverzitásának és anyagcsere potenciáljának a felmérése volt. A kutatás során NGS és MicroResp™ technikával vizsgáltuk a művelt és a természeteshez közeli állapotú talajok mikrobiális jellemzőit.

Az NGS adatai alapján a kukorica monokultúra szántott rétegének mintáinak baktériumközösség szerkezete nagyfokú hasonlóságot mutatott egymással, és elkülönült a löszpusztagyep A és C rétegéből formálódó csoporttól, míg a kukorica monokultúra C szintjéből származó minta élesen elvált a többitől. A gyepek talajában nem találtunk nagyobb bakteriális taxonómiai diverzitást, mint a művelt talajokban.

A MicroResp™ mérés alapján megállapítottuk, hogy a természeteshez közeli állapotú talajok felszínhez közeli (A) rétegében kiugró a mikrobiális aktivitás mértéke. A kukorica monokultúrából származó A szint minták mikrobiális aktivitási mintázata egymáshoz hasonló volt, a C rétegből származó minták külön csoportot képeztek.

Eredményeink alapján tehát a hosszú távú tartamkísérletbe vont művelt talajok baktériumközösségeinek filogenetikai diverzitása és metabolikus potenciálja jelentősen eltért a löszpusztagyep mintákétól.

  • Aira M. , Gómez-Brandón M., Lazcano C., Bååth E., Domínguez J. (2010) Plant genotype strongly modifies the structure and growth of maize rhizosphere microbial communities. Soil Biology & Biochemistry 42. (12) 2276-2281

    • Search Google Scholar
    • Export Citation
  • Bach E.M. , Williams R.J., Hargreaves S.K., Yang F., Hofmockel K. S. (2018) Greatest soil microbial diversity found in micro-habitats. Soil Biology & Biochemistry 118. 217-226

    • Search Google Scholar
    • Export Citation
  • Baudoin E. , Benizri E., Guckert A. (2003) Impact of artificial root exudates on the bacterial community structure in bulk soil and maize rhizosphere. Soil Biology & Biochemistry 35. (9) 1183-1192

    • Search Google Scholar
    • Export Citation
  • Berg G. , Smalla K. (2009) Plant species and soil type cooperativelyshape the structure and function of microbial communities in the rhizosphere. [review] FEMS Microbiology Ecology 68. (1) 1-13

    • Search Google Scholar
    • Export Citation
  • Bergmann G.T. , Bates S.T., Eilers K.G., Lauber C.L., Caporaso J.G., Walters W.A., Knight R., Fierer N. (2011) The under-recognized dominance of Verrucomicrobia in soil bacterial communities. Soil Biology & Biochemistry 43. (7) 1450-1455

    • Search Google Scholar
    • Export Citation
  • Berzsenyi Z. (2010) Significance of the 50-year-old long-term experiments in Martonvásár in improving crop production. Acta Agronomica Hungarica 58. 23-34

    • Search Google Scholar
    • Export Citation
  • Bhardwaj D. , Ansari M.W., Sahoo R.K., Tuteja N. (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. [review] Microbial Cell Factories 13. 66

    • Search Google Scholar
    • Export Citation
  • Brown C.T. , Hug L.A., Thomas B.C., Sharon I., Castelle C.J., Singh A., Wilkins M.J., Wrighton K.C., Williams K.H., Banfield J. F. (2015) Unusual biology across a group comprising more than 15% of domain Bacteria. Science 523. (7559) 208-211

    • Search Google Scholar
    • Export Citation
  • Campbell C.D. , Chapman S.J., Cameron C.M., Davidson M.S., Potts J. M. (2003) A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Applied and Environmental Microbiology 69. (6) 3593-3599

    • Search Google Scholar
    • Export Citation
  • Coenye T. , Vandamme P. (2003) Diversity and significance of Burkholderia species occupying diverse ecological niches. [review] Environmental Microbiology 5. (9) 719-729

    • Search Google Scholar
    • Export Citation
  • Da Rocha U.N. , Plugge C.M., George I., Van Elsas J.D., Van Overbeek L. S. (2013) The rhizosphere selects for particular groups of Acidobacteria and Verrucomicrobia. PLoS ONE 8. (12) 16-20 [e82443]

    • Search Google Scholar
    • Export Citation
  • Fierer N. , Ladau J., Clemente J.C., Leff J. W:, Owens S.M., Pollard K.S., Knight R., Gilbert J.A., Mcculley R. L. (2013) Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science 342. (6158) 621-624

    • Search Google Scholar
    • Export Citation
  • Garbeva P. , Van Veen J.A., Van Elsas J. D. (2003) Predominant Bacillus spp. in agricultural soil under different management regimes detected via PCRDGGE. Microbial Ecology 45. (3) 302-316

    • Search Google Scholar
    • Export Citation
  • Garbeva P. , Van Veen J.A., Van Elsas J. D. (2004) Microbial diversity in soil: Selection of microbial populations by plant and soil type and implications for disease suppressiveness. [review] Annual Review of Phytopathology 42. (1) 243-270

    • Search Google Scholar
    • Export Citation
  • García-Salamanca A. , Molina-Henares M.A., Van Dillewijn P., Solano J., Pizarro-TobÍAs P., Roca A., Duque E., Ramos J. L. (2013) Bacterial diversity in the rhizosphere of maize and the surrounding carbonate-rich bulk soil. Microbial Biotechnology 6. (1) 36-44

    • Search Google Scholar
    • Export Citation
  • Gupta S. , Kumar M., Kumar J., Ahmad V., Pandey R., Chauhan N. S. (2017) Systemic analysis of soil microbiome deciphers anthropogenic influence on soil ecology and ecosystem functioning. International Journal of Environmental Science and Technology 14. (10) 2229-2238

    • Search Google Scholar
    • Export Citation
  • Haichar F.Z. , Marol C., Berge O., Rangel-Castro J.I., Prosser J.I., Balesdent J., Heulin T., Achouak W. (2008) Plant host habitat and root exudates shape soil bacterial community structure. The ISME Journal 2. (12) 1221-1230

    • Search Google Scholar
    • Export Citation
  • Hargreaves S.K. , Williams R.J., Hofmockel K. S. (2015) Environmental filtering of microbial communities in agricultural soil shifts with crop growth. PLoS ONE 10. (7) 1-14 [e0134345]

    • Search Google Scholar
    • Export Citation
  • Hartmann M. , Frey B., Mayer J., Mäder P., Widmer F. (2015) Distinct soil microbial diversity under long-term organic and conventional farming. The ISME Journal 9. (5) 1177-1194

    • Search Google Scholar
    • Export Citation
  • Hayat R. , Ali S., Amara U., Khalid R., Ahmed I. (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. [review] Annals of Microbiology 60. (4) 579-598

    • Search Google Scholar
    • Export Citation
  • Hussain S. , Devers-Lamrani M., Azhari N.E., Martin-Laurent F. (2011) Isolation and characterization of an isoproturon mineralizing Sphingomonas sp. strain SH from a French agricultural soil. Biodegradation 22. (3) 637-650

    • Search Google Scholar
    • Export Citation
  • Ishaq S.L. , Johnson S.P., Miller Z.J., Lehnhoff E.A., Olivo S., Yeoman C.J., Menalled F. D. (2017) Impact of cropping system, soil inoculum, and plant species identity on soil bacterial community structure. Microbial Ecology 73. (2) 417-434

    • Search Google Scholar
    • Export Citation
  • Jenkinson D. S. (1977) The soil biomass. NZ Soil News 25. 213-218

  • Johnston-Monje D. , Raizada M. N. (2011) Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. [review] PLoS ONE 6. (6) 1-22 [e20396]

    • Search Google Scholar
    • Export Citation
  • Kandeler M. , Marschner P., Tscherko D., Gahoonia T.S., Nielsen N. E. (2002) Microbial community composition and functional diversity in the rhizosphere of maize. Plant and Soil 238. 301-312

    • Search Google Scholar
    • Export Citation
  • Li X. , Rui J., Xiong J., Li J., He Z., Zhou J., Yannarell A.C., Mackie R. I. (2014/I) Functional potential of soil microbial communities in the maize rhizosphere. PLoS ONE 9. (11) 1-9 [e112609]

    • Search Google Scholar
    • Export Citation
  • Li X. , Rui J., Mao Y., Yannarell A., Mackie R. (2014/II) Dynamics of the bacterial community structure in the rhizosphere of a maize cultivar. Soil Biology & Biochemistry 68. 392-401

    • Search Google Scholar
    • Export Citation
  • Ling N. , Sun Y., Ma J., Guo J., Zhu P., Peng C., Yu G., Ran W., Guo S., Shen Q. (2014) Response of the bacterial diversity and soil enzyme activity in particle-size fractions of Mollisol after different fertilization in a long-term experiment. Biology and Fertility of Soils 50. (6) 901-911

    • Search Google Scholar
    • Export Citation
  • Lundquist E.J. , Scow K.M., Jackson L.E., Uesugi S.L., Johnson C. R. (1999) Rapid response of soil microbial communities from conventional, low input, and organic farming systems to a wet/dry cycle. Soil Biology & Biochemistry 31. 1661-1675

    • Search Google Scholar
    • Export Citation
  • Mucsi M. , Csontos P., Borsodi A., Krett G., Gazdag O., Szili-KovÁCs T. (2017) A mikrorespirációs (MicroResp™) módszer alkalmazása apajpusztai szikes talajok mikrobaközösségeinek katabolikus aktivitás mintázatának vizsgálatára. Agrokémia és Talajtan 66. (1) 165-179

    • Search Google Scholar
    • Export Citation
  • Mudd P.J. , Hance R.J., Wright S. J. L. (1983) The persistence and metabolism of isoproturon in soil. Weed Research 23. (5) 239-246

  • Pascual J.A. , Garcia C., Hernandez T., Moreno J.L., Ros M. (2000) Soil microbial activity as a biomarker of degradation and remediation processes. Soil Biology & Biochemistry 32. 1877-1883

    • Search Google Scholar
    • Export Citation
  • Peiffer J.A. , Spor A., Koren O., Jin Z., Tringe S.G., Dangl J.L., Buckler E.S., Ley R. E. (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. PNAS 110. (16) 6543-6553

    • Search Google Scholar
    • Export Citation
  • Pershina E.V. , Ivanova E.A., Korvigo I.O., Chirak E.L., Sergaliev N.H., Abakumov E.V., Provorov N.A., Andronov E. E. (2018) Investigation of the core microbiome in main soil types from the East European plain. Science of the Total Environment 631-632. 1421-1430

    • Search Google Scholar
    • Export Citation
  • Pérez-Jaramillo J.E. , Mendes R., Raaijmakers J. M. (2016) Impact of plant domestication on rhizosphere microbiome assembly and functions. [review] Plant Molecular Biology 90. (6) 635-644

    • Search Google Scholar
    • Export Citation
  • Qiao Q. , Wang F., Zhang J., Chen Y., Zhang C., Liu G., Zhang H., Ma C., Zhang J. (2017) The variation in the rhizosphere microbiome of cotton with soil type, genotype and developmental stage. Nature Scientific Reports 7. 3940

    • Search Google Scholar
    • Export Citation
  • Saber D.L. , Crawford R. L. (1985) Isolation and characterization of Flavobacterium strains that degrade pentachlorophenol. Applied and Environmental Microbiology 50. (6) 1512-1518

    • Search Google Scholar
    • Export Citation
  • Schulz F. , Eloe-Fadrosh E.A., Bowers R.M., Jarett J., Nielsen T., Ivanova N.N., Kyrpides N.C., Woyke T. (2017) Towards a balanced view of the bacterial tree of life. Microbiome 5. (1) 140

    • Search Google Scholar
    • Export Citation
  • Shannon P. , Markiel A., Ozier O., Baliga N.S., Wang J.T., Ramage D., Amin N., Schwikowski B., Ideker T. (2003) Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research 13. (11) 2498-2504

    • Search Google Scholar
    • Export Citation
  • Sharma S.P. , Sayyed R.Z., Trivedi M.H., Gobi T. A. (2013) Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. [review] SpringerPlus 2. 587

    • Search Google Scholar
    • Export Citation
  • Sørensen S.R. , Ronen Z., Aamand J. (2001) Isolation from agricultural soil and characterization of a Sphingomonas sp. able to mineralize the phenylurea herbicide isoproturon. Applied and Environmental Microbiology 67. (12) 5403-5409

    • Search Google Scholar
    • Export Citation
  • Spain A.M. , Krumholz L.R., Elshahed M. S. (2009) Abundance, composition, diversity and novelty of soil Proteobacteria. The ISME Journal 3. (8) 992-1000

    • Search Google Scholar
    • Export Citation
  • Stopnisek N. , ZÜHlke D., Carlier A., BarberÁN A., Fierer N., Becher D., Riedel K., Eberl L., Weisskopf L. (2016) Molecular mechanisms underlying the close association between soil Burkholderia and fungi. The ISME Journal 10. (1) 253-264

    • Search Google Scholar
    • Export Citation
  • Szili-Kovács T . (2004) Szubsztrát indukált respiráció a talajban. [review] Agrokémia és Talajtan 53. (1-2) 195-214

  • Szili-Kovács T. , Bárány Á., Füzy A., Takács T., Krett G., Kovács R., Borsodi A. (2017) Mikrobiális anyagcsere aktivitás-mintázat és mikorrhiza gomba kolonizáció elemzése három szikes tó melletti talaj rizoszférában. Agrokémia és Talajtan 66. (1) 149-164

    • Search Google Scholar
    • Export Citation
  • Van Elsas J.D. , Garbeva P., Salles J. (2002) Effect of agronomical measures on the microbial diversity of soil as related to the suppression of soilborne plant pathogens. Biodegradation 13. 29-40

    • Search Google Scholar
    • Export Citation
  • Widmer F. , Rasche F., Hartmann M., Fliessbach A. (2006) Community structures and substrate utilization of bacteria in soils from organic and conventional farmi ng systems of the DOK long-term field experiment. Applied Soil Ecology 33. (3) 294-307

    • Search Google Scholar
    • Export Citation