View More View Less
  • 1 NARIC Institute of Agricultural Engineering, Gödöllő
  • | 2 MTA Research Centre for Astronomy and Earth Sciences, Budapest
  • | 3 Szent István University, Gödöllő
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $184.00

Summary

Adaptation is the most important strategy to reduce the effect of climate change and soil erosion. During this process adequate, rational land use is necessary to ensure climate resilience. Therefore, the main objective in this study was to evaluate the susceptibility of different land use intensities (arable land and grassland) to soil erosion. The rainfall simulation method is a good tool to measure and estimate soil erosion in situ. The comparative measurements were carried out in the field with a Shower Power-02 simulator on 6 m2 plots in Gerézdpuszta, where the slope angles were ~8% and the simulated rainfall events had high intensities (~70-96 mm h−1). The runoff and soil loss were significantly higher from arable land. The runoff-infiltration ratio and runoff coefficient showed lower infiltration capacity in the case of arable land. On average, the suspended sediment loads were tenfold higher under intensive land use. In the case of grassland a moderate increase in infiltration was observed due to higher rainfall intensity, as also reported in the literature. The rainfall simulation method provides good data for soil loss estimations.

  • Arnaez, J., Lasanta, T., Ruiz-Flaño, P., Ortigosa, L. (2007): Factors affecting runoff and erosion under simulated rainfall in Mediterranean vineyards. Soil & Tillage Research. 93. 324334.

    • Search Google Scholar
    • Export Citation
  • Boardmann, J., Poesen, J. (2006): Soil Erosion in Europe. Wiley, Chichester.

  • Bowyer-Bower, T.A.S. (1993): Effects of rainfall intensity and antecedent moisture on the steadystate infiltration rate in a semi-arid region. Soil Use and Management, 9. 6976.

    • Search Google Scholar
    • Export Citation
  • Centeri, C. (2006): Data on particle size distribution under different rainfall intensities on black fallow plots. Conference Proceedings of the 14th International Poster Day. Transport of Water, Chemicals and Energy in the System Soil-Crop Canopy-Atmosphere. CD, pp. 106111.

    • Search Google Scholar
    • Export Citation
  • Cerdan, O., Govers, G., Le Bissonnais, Y., Van Oost, K., Poesen, J., Saby, N., Dostal, T. (2010): Rates and spatial variations of soil erosion in Europe: a study based on erosion plot data. Geomorphology. 122. 167177.

    • Search Google Scholar
    • Export Citation
  • Chen L. , Huang Z., Gong J., Fu B., Huang Y. (2007): The effect of land cover/vegetation on soil water dynamic in the hilly area of loess plateau, China. Catena. 70. (2) 200208.

    • Search Google Scholar
    • Export Citation
  • Comino, J.R., Brings, C., Lassu, T., Iserloh, T., Senciales, J.M., Martínez Murillo, J.F., Ruiz Sinoga, J.D., Seeger, M., Ries, J.B. (2015): Rainfall and human activity impacts on soil losses and rill erosion in vineyards (Ruwer Valley, Germany). Solid Earth. 6. 823837

    • Search Google Scholar
    • Export Citation
  • De Vente, J., Poesen, J. (2005): Predicting soil erosion and sediment yield at the basin scale: scale issues and semi-quantitative models. Earth-Sci. Rev. 71. 95125.

    • Search Google Scholar
    • Export Citation
  • Erskine Wayne, D., Mahmoudzadeh, A., Myers, C. (2002): Land use effects on sediment yields and soil loss rates in small basins of Triassic sandstone near Sydney, NSW, Australia. Catena. 49. (4) 271287.

    • Search Google Scholar
    • Export Citation
  • Felix-Henningsen, P., Morgan, R.P.C., Mushala, H.M., Richson, R.J., Scholten, T. (1997): Soil erosion in Swaziland: a synthesis. Soil Technol. 11. 319329.

    • Search Google Scholar
    • Export Citation
  • Fiener, P., Seibert, S., Auerswald, K. (2011): A compilation and meta-analysis of rainfall simulation data on arable soils. Journal of Hydrology. 409. 395406.

    • Search Google Scholar
    • Export Citation
  • Hill, J., Schutt, B. (2000): The use of remote sensing satellites for mapping complex patterns of erosion and stability in arid Mediterranean ecosystems. RemoteSens. Environ. 74. 557569.

    • Search Google Scholar
    • Export Citation
  • IPCC (2013): Climate Change 2013: the Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, New York.

    • Search Google Scholar
    • Export Citation
  • Iserloh, T., Fister, W., Seeger, M., Willger, H., Ries, J.B. (2012): A small portable rainfall simulator for reproducible experiments on soil erosion. Soil & Tillage research. 124. 131137.

    • Search Google Scholar
    • Export Citation
  • Jakab, G., Szabó, J., Szalai, Z. (2015): Lepeleróziós vizsgálatok eredményei Magyarországon. Tájökológiai Lapok. 13. (1) 89103.

    • Search Google Scholar
    • Export Citation
  • Jakab, G., Szalai, Z. (2005): Barnaföld erózióérzékenységének vizsgálata esőztetéssel a Tetves-patak vízgyűjtőjén. Tájökológiai Lapok. 3. 177189.

    • Search Google Scholar
    • Export Citation
  • Jones, M.R., Blenkinsop, S., Fowler, H.J., Kilsby, C.G. (2014): Objective classification of extreme rainfall regions for the UK and updated estimates of trends in regional extreme rainfall. Int. J. Climatol. 34. (3) 751765.

    • Search Google Scholar
    • Export Citation
  • Jordan, G., Van rompaey, A., Szilassi, P., Csillag, G., Mannaerts, C., Woldai, T. (2005): Historical land use changes and their impact on sediment fluxes in the Balaton basin (Hungary). Agriculture, Ecosystems and Environment. 108. 119130.

    • Search Google Scholar
    • Export Citation
  • Kato, H., Onda, Y., Tanaka, Y., Asano, M. (2009): Field measurement of infiltration rate using an oscillating nozzle rainfall simulator in the cold, semiarid grassland of Mongolia. Catena. 763. 173181.

    • Search Google Scholar
    • Export Citation
  • Kertész, Á., Madarász, B., Csepinszky, B., Benke, S. (2010): The role of conservation agriculture in landscape protection. Hungarian Geographical Bulletin, 59. (2) 167180.

    • Search Google Scholar
    • Export Citation
  • Koler, S.A., Frasier, G.W., Trlica, M.J., Reeder, J.D. (2008): Microchannels affect runoff and sediment yield from a shortgrass prairie. Rangeland Ecology & Management. 61. 521528.

    • Search Google Scholar
    • Export Citation
  • Koulouri, M., Giourga, C. (2007): Land abandonment and slope gradient as key factors of soil erosion in Mediterranean terraced lands. Catena. 69. (3) 274281.

    • Search Google Scholar
    • Export Citation
  • Lal, R. (1998): Soil erosion impact on agronomic productivity and environment quality. Crit. Rec. Plant Sci. 17. 319464.

  • Lal, R. (Ed.) (1999): Soil Quality and Soil Erosion. Soil and Water Conservation Society, Ankeny, IA.

  • Lal, R. (2003): Soil erosion and the global carbon budget. Environ. Int. 29. (4) 437450.

  • Le Bissonnais, Y., Cerdan, O., Lecomte, v., Benkhadra, H., Souche're, V., Martin, P. (2005): Variability of soil surface characteristics influencing runoff and interrill erosion. Catena. 62. 111124.

    • Search Google Scholar
    • Export Citation
  • Leys, A., Govers, G., Gillijns, K., Poesen, J. (2007): Conservation tillage on loamy soils, explaining the variability in interrill runoff and erosion reduction. Eur. J. Soil Sci. 58. 14251436.

    • Search Google Scholar
    • Export Citation
  • Li, Z., Fang, H. (2016): Impacts of climate change on water erosion: A review. Earth-Science Reviews. 163. 94117.

  • Mohammad Ayed, G., Mohammad, A. A. (2010): The impact of vegetative cover type on runoff and soil erosion under different land uses. Catena. 81. (2) 97103.

    • Search Google Scholar
    • Export Citation
  • Morgan, R.P.C. (2009): Soil Erosion and Conservation. John Wiley & Sons, 320 pp.

  • Nassif, S.H., Wilson, E.M. (1975): The influence of slope and rain intensity on runoff and infiltration. Hydrological Sciences Bulletin. 20. 539553.

    • Search Google Scholar
    • Export Citation
  • Nearing, M.A., Pruski, F.F., O'Neal, M.R. (2004): Expected climate change impacts on soil erosion rates: a review. J. Soil Water Conserv. 59. (1) 4350.

    • Search Google Scholar
    • Export Citation
  • Penga, T., Wang, S. (2012): Effects of land use, land cover and rainfall regimes on the surface runoff and soil loss on karst slopes in southwest China. Catena. 90. 5362.

    • Search Google Scholar
    • Export Citation
  • Pető, Á., Bucsi, T., Centeri, C. (2008): Comparison of soil properties on slopes under different land use forms. Proceedings of the 15th International Congress of ISCO, Soil and Water Conservation, “Climate Change and Environmental Sensitivity” on CD, pp. 14.

    • Search Google Scholar
    • Export Citation
  • Podmanicky, L., Balázs, K., Belényesi, M., Centeri, C., Kristóf, D., Kohlheb, N. (2011): Modelling soil quality changes in Europe. An impact assessment of land use change on soil quality in Europe. Ecological Indicators. 11. 415.

    • Search Google Scholar
    • Export Citation
  • Ribolzi, O., Patin, J., Bresson, L.M., Latsachack, K.O., Mouche, E., Sengtaheuanghoung, O., Silvera, n., Thiébaux, J.P., Valentin, C. (2011): Impact of slope gradient on soil surface features and infiltration on steep slopes in northern Laos. Geomorphology. 127. (1–2) 5363.

    • Search Google Scholar
    • Export Citation
  • Rimal, B.K., Lal, R. (2009): Soil and carbon losses from five different land management areas under simulated rainfall. Soil & Tillage Research. 106. 6270.

    • Search Google Scholar
    • Export Citation
  • Rodriguez, A.R., Guerra, J.A., Gorrin, S.P., Arbelo, C.D., Mora, J.L. (2002): Aggregates stability and water erosion in Andosols of the Canary islands. Land Degrad. Dev. 13. 515523.

    • Search Google Scholar
    • Export Citation
  • Routschek, A., Schmidt, J., Kreienkamp, F. (2014): Impact of climate change on soil erosion – a high-resolution projection on catchment scale until 2100 in Saxony/Germany. Catena. 121. 99109.

    • Search Google Scholar
    • Export Citation
  • Quinton, J.N., Govers, G., Van Oost, K., Bardgett, R.D. (2010): The impact of agricultural soil erosion on biogeochemical cycling. Nat. Geosci. 3. 311314.

    • Search Google Scholar
    • Export Citation
  • Schiettecatte, W., Gabriels, D., Cornelis, W.M., Hofman, G. (2008): Enrichment of organic carbon in sediment transport by inter-rill and rill erosion processes. Soil Sci. Soc. Am. J. 72. 5055.

    • Search Google Scholar
    • Export Citation
  • Sharpley, A.N., Chapra, S.C., Wedepohl, R., Sims, J.T., Daniel, T.C., Reddy, K.R. (1994): Managing agricultural phosphorus for protection of surface waters: issues and options. J. Environ. Qual. 23. 437451.

    • Search Google Scholar
    • Export Citation
  • Shen, H., Zheng, F., Wen, L., Han, Y., Hu, W. (2016): Impacts of rainfall intensity and slope gradient on rill erosion processes at loessial hillslope. Soil & Tillage Research. 155. 429436.

    • Search Google Scholar
    • Export Citation
  • Sheridan, G.J., Noske, P.J., Lane, P.N.J., Sherwin, C.B. (2008): Using rainfall simulation and site measurements to predict annual interrill erodibility and phosphorus generation rates from unsealed forest roads, Validation against in-situ erosion measurements. Catena. 73. 4962.

    • Search Google Scholar
    • Export Citation
  • Szabó, B., Centeri, C., Szalai, Z., Jakab, G., Szabó, J. (2015): Comparison of soil erosion dynamics under extensive and intensive cultivation based on basic soil parameters. Növénytermelés. 64. 2326.

    • Search Google Scholar
    • Export Citation
  • Szalai, Z, Szabó, J, Kovács, J, Mészáros, E, Albert, G, Centeri, C, Szabó, B, Madarász, B, Zacháry, D, Jakab, G. (2016): Redistribution of soil organic carbon triggered by erosion at field scale under subhumid climate, Hungary. Pedosphere. 26. (5) 652665.

    • Search Google Scholar
    • Export Citation
  • Szilassi, P., Jordan, G., van Rompaey, A., Csillag, G. (2006): Impacts of historical land use changes on erosion and agricultural soil properties in the Kali Basin at Lake Balaton, Hungary. Catena. 68. (3) 96108.

    • Search Google Scholar
    • Export Citation
  • Vacca, A., Loddo, S., Ollesch, G., Puddu, R., Serra, G., Tomasi, D., Aru, A. (2000): Measurement of runoff and soil erosion in three areas under different land use in Sardinia (Italy). Catena. 40. (1) 6992.

    • Search Google Scholar
    • Export Citation
  • Verstraeten, G., Poesen, J. (2000): The importance of sediment characteristics and trap efficiency in assessing sediment yield using retention ponds. Phys. Chem. Earth. 26. 8387.

    • Search Google Scholar
    • Export Citation
  • Won, C.H., Choi, Y.H., Shin, M.H., Lim, K.J., Choi, J.D. (2012): Effects of rice straw mats on runoff and sediment discharge in a laboratory rainfall simulation. Geoderma. 189–190. 164169.

    • Search Google Scholar
    • Export Citation

Senior editors

Editor(s)-in-Chief: Szili-Kovács, Tibor

Technical Editor(s): Vass, Csaba

Editorial Board

  • Bidló, András (Soproni Egyetem, Erdőmérnöki Kar, Környezet- és Földtudományi Intézet, Sopron)
  • Blaskó, Lajos (Debreceni Egyetem, Agrár Kutatóintézetek és Tangazdaság, Karcagi Kutatóintézet, Karcag)
  • Buzás, István (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)
  • Dobos, Endre (Miskolci Egyetem, Természetföldrajz-Környezettan Tanszék, Miskolc)
  • Farsang, Andrea (Szegedi Tudományegyetem, Természettudományi és Informatikai Kar, Szeged)
  • Filep, Tibor (Csillagászati és Földtudományi Központ, Földrajztudományi Intézet, Budapest)
  • Fodor, Nándor (Agrártudományi Kutatóközpont, Mezőgazdasági Intézet, Martonvásár)
  • Győri, Zoltán (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Jolánkai, Márton (Magyar Agrár- és Élettudományi Egyetem, Növénytermesztési-tudományok Intézet, Gödöllő)
  • Kátai, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Lehoczky, Éva (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Makó, András (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Michéli, Erika (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Németh, Tamás (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Pásztor, László (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Ragályi, Péter (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Rajkai, Kálmán (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Rékási, Márk (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Schmidt, Rezső (Széchenyi István Egyetem, Mezőgazdaság- és Élelmiszertudományi Kar, Mosonmagyaróvár)
  • Tamás, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Tóth, Gergely (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Zoltán (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)

 

International Editorial Board

  • Blum, Winfried E. H. (Institute for Soil Research, University of Natural Resources and Life Sciences (BOKU), Wien, Austria)
  • Hofman, Georges (Department of Soil Management, Ghent University, Gent, Belgium)
  • Horn, Rainer (Institute of Plant Nutrition and Soil Science, Christian Albrechts University, Kiel, Germany)
  • Inubushi, Kazuyuki (Graduate School of Horticulture, Chiba University, Japan)
  • Kätterer, Thomas (Swedish University of Agricultural Sciences (SLU), Sweden)
  • Lichner, Ljubomir (Institute of Hydrology, Slovak Academy of Sciences, Bratislava, Slovak Republic)
  • Loch, Jakab (Faculty of Agricultural and Food Sciences and Environmental Management, University of Debrecen, Debrecen, Hungary)
  • Nemes, Attila (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Pachepsky, Yakov (Environmental Microbial and Food Safety Lab USDA, Beltsville, MD, USA)
  • Simota, Catalin Cristian (The Academy of Agricultural and Forestry Sciences, Bucharest, Romania)
  • Stolte, Jannes (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Wendroth, Ole (Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, USA)

         

Szili-Kovács, Tibor
ATK Talajtani Intézet
Herman Ottó út 15., H-1022 Budapest, Hungary
Phone: (+36 1) 212 2265
Fax: (+36 1) 485 5217
E-mail: editorial.agrokemia@atk.hu

Indexing and Abstracting Services:

  • CAB Abstracts
  • EMBiology
  • Global Health
  • SCOPUS
  • CABI

2020  
Scimago
H-index
9
Scimago
Journal Rank
0,179
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
48/73=0,7
Scopus
Cite Score Rank
Agronomy and Crop Science 278/347 (Q4)
Soil Science 108/135 (Q4)
Scopus
SNIP
0,18
Scopus
Cites
48
Scopus
Documents
6
Days from submission to acceptance 130
Days from acceptance to publication 152
Acceptance
Rate
65%

 

2019  
Scimago
H-index
9
Scimago
Journal Rank
0,204
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
49/88=0,6
Scopus
Cite Score Rank
Agronomy and Crop Science 276/334 (Q4)
Soil Science 104/126 (Q4)
Scopus
SNIP
0,423
Scopus
Cites
96
Scopus
Documents
27
Acceptance
Rate
91%

 

Agrokémia és Talajtan
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 144 EUR / 194 USD
Print + online subscription: 160 EUR / 232 USD
Subscription fee 2022 Online subsscription: 146 EUR / 198 USD
Print + online subscription: 164 EUR / 236 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Agrokémia és Talajtan
Language Hungarian, English
Size B5
Year of
Foundation
1951
Publication
Programme
2021 Volume 70
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0002-1873 (Print)
ISSN 1588-2713 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 1 0 0
Jul 2021 2 1 1
Aug 2021 0 0 0
Sep 2021 1 0 0
Oct 2021 6 0 0
Nov 2021 13 0 0
Dec 2021 1 0 0