Author:
Salvatore Engel-Di Mauro State University of New York, New Paltz, USA

Search for other papers by Salvatore Engel-Di Mauro in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Various methods can be used for soil acidification monitoring, which can be useful towards remediation or preventing environmental degradation. It has been demonstrated that acidification can be made evident over the span of a few years, with proper monitoring. However, a reliance on pH as a main indicator can lead to detection inadequacies, especially where soils are relatively well buffered against acidity and acid deposition is negligible. A technique employing acid-neutralising capacity (ANC) derivation was applied to cultivated and uncultivated Alluvial Meadow soils to find out whether ANC data could prove effective in determining the occurrence and degree of acidification. Sampling and lab work were carried out between 2009 and 2010 on 33 sites under various land uses. Unlike pH, ANC, soil organic matter (SOM), and cation exchange capacity (CEC) decreased significantly. ANC analysis appears to be effective in detecting acidification trends over short periods and, in contrast to previous studies, under ostensibly unremarkable conditions.

  • Antal, J. 1999. Fertilisation for Crops. In: Nutrient Management (ed. G. Füleky), pp. 321322, Mezőgazda Kiadó, Budapest. (in Hungarian)

    • Search Google Scholar
    • Export Citation
  • Arshad, M.A., Lowery, B., & Grossman, B., 1996. Physical tests for monitoring soil quality. In: Methods for Assessing Soil Quality (eds J.W. Doran & A J. Jones), pp. 123141, Soil Science Society of America, Madison.

    • Search Google Scholar
    • Export Citation
  • Baker, A.S., Kuo, S., & Chae, Y.M., 1981. Comparisons of arithmetic average soil pH values with the pH values of composite samples. Soil Science Society of America Journal. 45. 828830.

    • Search Google Scholar
    • Export Citation
  • Barak, P., Jobe, B.O., Krueger, A.R., Peterson, L.A., & Laird, D.A. 1997. Effects of long-term soil acidification due to nitrogen fertilizer inputs in Wisconsin. Plant and Soil. 197. 6169.

    • Search Google Scholar
    • Export Citation
  • Baranyai, F., Fekete, A., & Kovács, I. 1987. The results of soil nutrient content analyses in Hungary. Mezőgazdasági Kiadó, Budapest (in Hungarian).

    • Search Google Scholar
    • Export Citation
  • Binkley, D., & P. Sollins. 1990. Factors determining differences in soil pH in adjacent conifer and alder-conifer stands. Soil Science Society of America Journal. 54. 14271433.

    • Search Google Scholar
    • Export Citation
  • Blake, L. 2005. Acid rain and soil acidification. In: Encyclopedia of Soils in the Environment (ed. Hillel, D.), Elsevier, Amsterdam.

  • Bmntá [Baranya County Soil Conservation and Plant Protection Agency] . 1989. AIIR database information for large operations' agricultural plots. Unpublished database. Bmntá, Pécs (in Hungarian).

    • Search Google Scholar
    • Export Citation
  • Bolan, N.S., Adriano, D.C., & Curtin, D., 2003. Soil acidification and liming interactions with nutrient and heavy metal transformation and bioavailability. Advances in Agronomy. 78. 215272.

    • Search Google Scholar
    • Export Citation
  • Bouman, O.T., Curtin, D., Campbell, C.A., Biederbeck, B.O., & Ukrainetz, H., 1995. Soil acidification from long-term use of anhydrous ammonia and urea. Soil Science Society of America Journal. 59. 14881494.

    • Search Google Scholar
    • Export Citation
  • Brahy, V., Deckers, J., & Delvaux, B. 2000. Estimation of soil weathering stage and acid neutralizing capacity in a toposequence Luvisol–Cambisol on loess under deciduous forest in Belgium. European Journal of Soil Science. 51. 113.

    • Search Google Scholar
    • Export Citation
  • Buzás, I. , 1988. Handbook of Soil and Agrochemical Analytical Mehods 2. Mehods for Soil Physico-Chemical and Chemical Analysis. Mezőgazdasági Kiadó, Budapest (in Hungarian).

    • Search Google Scholar
    • Export Citation
  • Conyers, M.K., Munns, D.N., Helyar, K.R., & Poile, G.J., 1991. The use of cation activity ratios to estimate the intensity of soil acidity. Journal of Soil Science. 42. 599606.

    • Search Google Scholar
    • Export Citation
  • D'Agostino, R.B., & Stephens, M.A., 1986. Goodness-of-Fit Techniques. Marcel Dekker, New York.

  • Engel-Di Mauro, S. 2018. An eco-social approach to soil pH variability on cultivated land: A case study from the Drava River Floodplain. In: The Palgrave Handbook of Critical Physical Geography (ed. R. Lave, C. Biermann, and S. Lane), Palgrave, New York.

    • Search Google Scholar
    • Export Citation
  • Fageria, N.K., Baligar, V.C., & Jones, C.A. 1997. Growth and Mineral Nutrition of Field Crops. Marcel Dekker, New York.

  • Helyar, K.R., & Porter, W.M., 1989. Soil acidification, its measurement and the processes involved. In: Soil Acidity and Plant Growth (ed A.D. Dobson), pp. 61101, Academic Press, Sydney.

    • Search Google Scholar
    • Export Citation
  • Helyar, K.R., Cregan, P.D., & Godyn, D.L., 1990. Soil acidity in New South Wales – Current pH values and estimates of acidification rates. Australian Journal of Soil Research. 28. 523537.

    • Search Google Scholar
    • Export Citation
  • Ho, R. , 2006. Handbook of Univariate and Multivariate Data Analysis and Interpretation with SPSS. Chapman and Hall, Boca Raton.

  • Krasilnikov, P., Arnold, R., & Michéli, E., 2009. Soil classification of Hungary. In: A Handbook of Soil Terminology, Correlation and Classification (eds Pavel Krasilnikov, Juan-José Ibáñez Martí, Richard Arnold, and Serghei Sobha), pp. 170176, Earthscan, London.

    • Search Google Scholar
    • Export Citation
  • Lesturgez, G., Poss, R., Noble, A., Grünberger, O., Chintachao, W., & Tessier, D. 2006. Soil acidification without pH drop under intensive cropping systems in Northeast Thailand. Agriculture, Ecosystems and Environment. 114. 239248.

    • Search Google Scholar
    • Export Citation
  • Lovász, G. , 1977. The Physical Geography of Baranya County. Baranya Megyei Levéltár, Pécs (in Hungarian).

  • MÉM Országos Földügyi És Térképészeti Hivatal . 1983a. Magyar Népköztársaság, Baranya M.-Somogy M., 03 Sellye, 1:100000. Kártográfiai Vállalat, Budapest.

    • Search Google Scholar
    • Export Citation
  • MÉM Országos Földügyi És Térképészeti Hivatal . 1983b. Magyar Népköztársaság, Baranya M.-Somogy M., 04 Siklós, 1:100000. Kártográfiai Vállalat, Budapest.

    • Search Google Scholar
    • Export Citation
  • MSZ-08-0210 . 1977. Determination of Soil Organic Carbon Content. Hungarian Standards Association, Budapest (in Hungarian).

  • MSZ-08-0205 . 1978. Analysis of Soil Physical and Hydraulic Properties. Hungarian Standards Association, Budapest (in Hungarian).

  • MSZ-08-0206/2 . 1978. Analysis of the Chemical Properties of Soils. Laboratory Investigations (pH, Alkalinity, Total Water Soluble Salt Content, Hydrolitic and Exchangable Acidity). Hungarian Standards Association, Budapest (in Hungarian).

    • Search Google Scholar
    • Export Citation
  • MSZ-08-0214-1 . 1978. Quantitative and Qualitative Determination of Cation Exchange Capacity in Soil. Hungarian Standards Association, Budapest (in Hungarian).

    • Search Google Scholar
    • Export Citation
  • MSZ-08-0452 . 1980. Use of High-Capacity Analyser Systems for Soils Analyses. Quantitative Determination of Soil Organic Carbon Content in a Contiflo Analyzer System. Hungarian Standards Association, Budapest (in Hungarian).

    • Search Google Scholar
    • Export Citation
  • MSZ-08-1722/3 . 1989. Soil Analysis. Determination of Soluble Toxic Element and Heavy Metal Content in Soils. Hungarian Standards Association, Budapest (in Hungarian).

    • Search Google Scholar
    • Export Citation
  • MSZ 20135 . 1999. Determination of Soluble Nutrient Element Content in Soils. Hungarian Standards Association, Budapest (in Hungarian).

    • Search Google Scholar
    • Export Citation
  • MSZ 21470-50 . 2006. Soil Analysis for Environmental Protection. Determining Total and Soluble Content of Toxic Elements, Heavy Metals, and Chromium (VI). Hungarian Standards Association, Budapest (in Hungarian).

    • Search Google Scholar
    • Export Citation
  • Nelson, P.N., & N. Su. 2010. Soil pH buffering capacity: a descriptive function and its application to some acidic tropical soils. Australian Journal of Soil Research. 48. 201207.

    • Search Google Scholar
    • Export Citation
  • OMSZ (Hungarian Meteorological Service) , 2011. Rainfall data, 1996–2010, Farkasfa, Siófok. Unpublished database. OMSZ, Budapest (in Hungarian).

    • Search Google Scholar
    • Export Citation
  • Pongrácz, R., Batholy, J., & Kis, A. 2014. Estimation of future precipitation conditions for Hungary with special focus on dry periods. Időjárás. 118. 305321.

    • Search Google Scholar
    • Export Citation
  • Porter, W.M., Mclay, C.D.A., & Dolling, P.J. 1995. Rates and sources of acidification in agricultural systems of southern Australia. In: Plant-Soil Interactions at Low pH: Principles and Management (eds R.A. Date, N.J. Grundon, G.E. Rayment, & M.E. Probert), pp. 7583, Kluwer Academic Publishers, Dordrecht.

    • Search Google Scholar
    • Export Citation
  • Prasad, R., & Power, J.F., 1997. Soil Fertility Management for Sustainable Agriculture. CRC Press, Boca Raton.

  • Richter, D.D., & Markewitz, D. 2001. Understanding Soil Change. Soil Sustainability over Millennia, Centuries, and Decades. Cambridge University Press, Cambridge.

    • Search Google Scholar
    • Export Citation
  • Skinner, M.F., Zabowski, D., Harrison, R., Lowe, A., & Xue, D. 2001. Measuring the cation exchange capacity of forest soils. Communications in Soil Science & Plant Analysis. 32. 17511764.

    • Search Google Scholar
    • Export Citation
  • Stefanovits, P., Filep, G., & Füleky, G. 1999. Soil Science. Mezőgazda Kiadó, Budapest (in Hungarian).

  • Sumner, M.E. , 1998. Acidification. In: Methods for Assessment of Soil Degradation (eds R. Lal, W.H. Blum, C. Valentine, & B.A. Stewart), pp. 213228, CRC Press, Boca Raton.

    • Search Google Scholar
    • Export Citation
  • Sumner, M.E., Noble, A.D., 2003. Soil acidification: the world story. In: Handbook of Soil Acidity (ed Z. Rengel), pp. 128, Marcel Dekker, New York.

    • Search Google Scholar
    • Export Citation
  • Tan, K.H. , 1996. Soil Sampling, Preparation, and Analysis. Marcel Dekker, New York.

  • TECATOR . 1984. Determination of Ammonia Nitrogen (ASN 65-32/84) or Nitrate Nitrogen (ASN 65-31/84) in Soil Samples Extractable by 2 M KCl Using Flow Injection Analysis. Application Notes. Tecator, Höganas, Sweden.

    • Search Google Scholar
    • Export Citation
  • Timm, N.H. , 2002. Applied Multivariate Analysis. Springer, New York.

  • Trájer, A., Bobvos, J., Krisztalovics, K., & Páldy, A. 2013. Regional differences between ambient temperature and incidence of Lyme Disease in Hungary. Időjárás. 117: 175186.

    • Search Google Scholar
    • Export Citation
  • Van Breeemen, N. 1991. Soil acidification and alkalinization. In: Soil Acidity (eds B. Ulrich and M.E. Sumner), pp. 117, Springer Verlag, Berlin.

    • Search Google Scholar
    • Export Citation
  • Van Breeemen, N., & Jordens, E.R., 1983. Effects of atmospheric ammonium sulphate on calcareous and non-calcareous soils of woodlands in The Netherlands. In: Effects of Accumulation of Air Pollutants in Forest Ecosystems (eds B. Ulrich & J. Pankrath), pp. 171182, D. Reidel, Dordrecht.

    • Search Google Scholar
    • Export Citation
  • Van Breeemen, N., Mulder, J., & Driscoll, C.T., 1983. Acidification and alkalinization of soils. Plant and Soil. 75. 283308.

  • Van Breeemen, N., & Wright, R.F., 2004. History and prospect of catchment biogeochemistry: A European perspective based on acid rain. Ecology. 85. 23632368.

    • Search Google Scholar
    • Export Citation
  • Várallyay, G., Buzásné Hartyányi, M., Marth, P., Molnár, E., Podmaniczky, G., Szabados, I., Szabóné Kele, G., 1995. Soil conservation information and monitoring system. Volume 1. Methods. Földművelésügyi Minisztérium, Budapest (in Hungarian).

    • Search Google Scholar
    • Export Citation
  • Whittaker, R.H., Likens, G.E., Bormann, F.H., Siccama, T.G., 1979. The Hubbard Brook Ecosystem study: forest nutrient cycling and element behavior. Ecology. 60. 203220.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: Szili-Kovács, Tibor

Technical Editor(s): Vass, Csaba

Section Editors

  • Filep, Tibor (Csillagászati és Földtudományi Központ, Földrajztudományi Intézet, Budapest) - soil chemistry, soil pollution
  • Makó, András (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil physics
  • Pásztor, László (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil mapping, spatial and spectral modelling
  • Ragályi, Péter (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - agrochemistry and plant nutrition
  • Rajkai, Kálmán (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil water flow modelling
  • Szili-Kovács Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil biology and biochemistry

Editorial Board

  • Bidló, András (Soproni Egyetem, Erdőmérnöki Kar, Környezet- és Földtudományi Intézet, Sopron)
  • Blaskó, Lajos (Debreceni Egyetem, Agrár Kutatóintézetek és Tangazdaság, Karcagi Kutatóintézet, Karcag)
  • Buzás, István (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)
  • Dobos, Endre (Miskolci Egyetem, Természetföldrajz-Környezettan Tanszék, Miskolc)
  • Fodor, Nándor (Agrártudományi Kutatóközpont, Mezőgazdasági Intézet, Martonvásár)
  • Győri, Zoltán (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Imréné Takács Tünde (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Jolánkai, Márton (Magyar Agrár- és Élettudományi Egyetem, Növénytermesztési-tudományok Intézet, Gödöllő)
  • Kátai, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Lehoczky, Éva (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Michéli, Erika (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Rékási, Márk (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Schmidt, Rezső (Széchenyi István Egyetem, Mezőgazdaság- és Élelmiszertudományi Kar, Mosonmagyaróvár)
  • Tamás, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Tóth, Gergely (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Zoltán (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)

International Editorial Board

  • Blum, Winfried E. H. (Institute for Soil Research, University of Natural Resources and Life Sciences (BOKU), Wien, Austria)
  • Hofman, Georges (Department of Soil Management, Ghent University, Gent, Belgium)
  • Horn, Rainer (Institute of Plant Nutrition and Soil Science, Christian Albrechts University, Kiel, Germany)
  • Inubushi, Kazuyuki (Graduate School of Horticulture, Chiba University, Japan)
  • Kätterer, Thomas (Swedish University of Agricultural Sciences (SLU), Sweden)
  • Lichner, Ljubomir (Institute of Hydrology, Slovak Academy of Sciences, Bratislava, Slovak Republic)
  • Nemes, Attila (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Pachepsky, Yakov (Environmental Microbial and Food Safety Lab USDA, Beltsville, MD, USA)
  • Simota, Catalin Cristian (The Academy of Agricultural and Forestry Sciences, Bucharest, Romania)
  • Stolte, Jannes (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Wendroth, Ole (Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, USA)

Szili-Kovács, Tibor
ATK Talajtani Intézet
Herman Ottó út 15., H-1022 Budapest, Hungary
Phone: (+36 1) 212 2265
Fax: (+36 1) 485 5217
E-mail: editorial.agrokemia@atk.hu

Indexing and Abstracting Services:

  • CAB Abstracts
  • CABELLS Journalytics
  • CABI
  • EMBiology
  • Global Health
  • SCOPUS

2022  
Web of Science  
Total Cites
WoS
not indexed
Journal Impact Factor not indexed
Rank by Impact Factor

not indexed

Impact Factor
without
Journal Self Cites
not indexed
5 Year
Impact Factor
not indexed
Journal Citation Indicator not indexed
Rank by Journal Citation Indicator

not indexed

Scimago  
Scimago
H-index
10
Scimago
Journal Rank
0.151
Scimago Quartile Score

Agronomy and Crop Science (Q4)
Soil Science (Q4)

Scopus  
Scopus
Cite Score
0.6
Scopus
CIte Score Rank
Agronomy and Crop Science 335/376 (11th PCTL)
Soil Science 134/147 (9th PCTL)
Scopus
SNIP
0.263

2021  
Web of Science  
Total Cites
WoS
not indexed
Journal Impact Factor not indexed
Rank by Impact Factor

not indexed

Impact Factor
without
Journal Self Cites
not indexed
5 Year
Impact Factor
not indexed
Journal Citation Indicator not indexed
Rank by Journal Citation Indicator

not indexed

Scimago  
Scimago
H-index
10
Scimago
Journal Rank
0,138
Scimago Quartile Score Agronomy and Crop Science (Q4)
Soil Science (Q4)
Scopus  
Scopus
Cite Score
0,8
Scopus
CIte Score Rank
Agronomy and Crop Science 290/370 (Q4)
Soil Science 118/145 (Q4)
Scopus
SNIP
0,077

2020  
Scimago
H-index
9
Scimago
Journal Rank
0,179
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
48/73=0,7
Scopus
Cite Score Rank
Agronomy and Crop Science 278/347 (Q4)
Soil Science 108/135 (Q4)
Scopus
SNIP
0,18
Scopus
Cites
48
Scopus
Documents
6
Days from submission to acceptance 130
Days from acceptance to publication 152
Acceptance
Rate
65%

 

2019  
Scimago
H-index
9
Scimago
Journal Rank
0,204
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
49/88=0,6
Scopus
Cite Score Rank
Agronomy and Crop Science 276/334 (Q4)
Soil Science 104/126 (Q4)
Scopus
SNIP
0,423
Scopus
Cites
96
Scopus
Documents
27
Acceptance
Rate
91%

 

Agrokémia és Talajtan
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 150 EUR / 198 USD
Print + online subscription: 170 EUR / 236 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Agrokémia és Talajtan
Language Hungarian, English
Size B5
Year of
Foundation
1951
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0002-1873 (Print)
ISSN 1588-2713 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Dec 2023 292 32 0
Jan 2024 122 217 0
Feb 2024 59 32 0
Mar 2024 85 1 1
Apr 2024 212 0 0
May 2024 23 0 0
Jun 2024 0 0 0