Authors:
Péter Csathó Institute for Soil Sciences and Agricultural Chemistry, Budapest

Search for other papers by Péter Csathó in
Current site
Google Scholar
PubMed
Close
,
Tamás Árendás Agricultural Institute, Martonvásár

Search for other papers by Tamás Árendás in
Current site
Google Scholar
PubMed
Close
,
Anita Szabó Institute for Soil Sciences and Agricultural Chemistry, Budapest

Search for other papers by Anita Szabó in
Current site
Google Scholar
PubMed
Close
,
Renáta Sándor Agricultural Institute, Martonvásár

Search for other papers by Renáta Sándor in
Current site
Google Scholar
PubMed
Close
,
Péter Ragályi Institute for Soil Sciences and Agricultural Chemistry, Budapest

Search for other papers by Péter Ragályi in
Current site
Google Scholar
PubMed
Close
,
Klára Pokovai Institute for Soil Sciences and Agricultural Chemistry, Budapest

Search for other papers by Klára Pokovai in
Current site
Google Scholar
PubMed
Close
,
Zoltán Tóth Institute for Soil Sciences and Agricultural Chemistry, Budapest

Search for other papers by Zoltán Tóth in
Current site
Google Scholar
PubMed
Close
, and
Rita Kremper University of Debrecen, Debrecen

Search for other papers by Rita Kremper in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A long-term fertilizer experiment was set up on a calcareous chernozem soil with a wheat-maize-maize-wheat crop rotation, as part of the National Long-Term Fertilization Experiments (NLTFE) Network, set up with the same experimental pattern under different soil and agro-climatic conditions in Hungary. The effect of P fertilization on the soil, on maize yields, and on leaf P and Zn contents in the flowering stage were examined in the trials. In certain years, foliar zinc fertilizer was applied, in order to prove that yield losses due to P-induced Zn deficiency can be compensated by Zn application. Calcium-ammonium nitrate, superphosphate and 60% potassium chloride were used as NPK, and Zn-hexamine (in 1991) and Zn-sulphate (in 2006) as foliar Zn fertilizers.

In the years since 1970, averaged over 36 maize harvests, treatments N3P1K1 and N4P1K1, involving annual rates of 150 to 200 kg ha−1 N, 100 kg ha−1 K2O and 50 kg ha−1 P2O5, gave the highest yields (8.3 t ha−1 grain on average). As the years progressed, treatments exceeding 50 kg ha−1 P2O5 a year were found to have an increasingly unfavourable effect. Based on the yields of ten cycles (36 maize years), variants P2, P3 and P4 resulted in 16–30–45 t ha−1 grain yield losses in comparison to variant P1.

Investigations carried out in 1987, 1991 and 2006 showed that the leaf Zn content on plots with more than 150 to 200 mg kg−1 AL (ammonium lactate)-soluble P2O5 (over 30 mg kg−1 Olsen-P) dropped below 15 mg kg−1 and the P/Zn ratio rose to above 150 or even 250 in the flowering stage in two years. As a consequence of P-induced Zn deficiency, maize grain yields fell by 2 t ha−1 in two of the years investigated and by almost 5 t ha−1 in one year at the P4 level (200 kg ha−1 P2O5 year−1), in comparison to the P1 variant (50 kg ha−1 P2O5 year−1).

When 1.2 kg ha−1 foliar Zn was applied in the form of zinc hexamine, 1.7 to 1.8 t ha−1 maize grain yield surpluses were obtained on plots with higher P levels in 1991. In 2006 the P-induced Zn deficiency caused unexpectedly high (almost 5 t ha−1) grain yield losses on plots with higher P levels, so the maize grain yield surpluses obtained in response to 1.2 kg ha−1 foliar Zn application, in the form of zinc sulphate, were as high as 1.6 to 3.8 t ha−1.

The data clearly indicate that maize yields are impeded by both poor and excessive P status. Soil and plant analysis may be useful tools for monitoring the nutritional status of plants.

  • Balla, H. 1960. The effects of fertilization on maize yield and composition of the maize crop. Agrokémia és Talajtan. 9. 307322. (In Hungarian)

    • Search Google Scholar
    • Export Citation
  • Baranyai, F., Fekete, A. & Kovács, I. 1987: Results of the national soil testing analyses in Hungary. Mezőgazdasági Kiadó, Budapest. 189 pp. (In Hungarian)

    • Search Google Scholar
    • Export Citation
  • Barkóczi, M., Szakál, P. & Tölgyesi, E. 1989. Experiments with recycled zinc-hexamine complex derived from waste materials. Agrokémia és Talajtan. 38. 327329. (In Hungarian)

    • Search Google Scholar
    • Export Citation
  • Bergmann, W. 1983. Ernährungsstörungen bei Kulturpflanzen. VEB Gustav Fischer Verlag, Jena.

  • Cakmak, I., Marschner, H. 1986. Mechanisms of phosphorus-induced zinc deficiency in cotton. I. Zinc deficiency-enhanced uptake rate of phosphorus. Physiol. Plant. 68. (3) 483490.

    • Search Google Scholar
    • Export Citation
  • Csathó, P. 2003: Factors affecting maize responses to P fertilizer application, obtained from the database of Hungarian long-term field trials published between 1960 and 2000. A review. Agrokémia és Talajtan. 52. 455472. (In Hungarian)

    • Search Google Scholar
    • Export Citation
  • Csathó, P., Árendás, T., Fodor, N. & Németh, T. 2009. Evaluation of different fertilizer recommendation systems on various soils and crops in Hungary. Communications in Soil Science and Plant Analysis. 40. 16891711.

    • Search Google Scholar
    • Export Citation
  • Csathó, P., Árendás, T. & Németh, T. 1998. New, environmentally friendly fertiliser advisory system, based on the data set of the Hungarian long-term field trials set up between 1960 and 1995. Communications in Soil Science and Plant Analysis. 29. 21612174.

    • Search Google Scholar
    • Export Citation
  • Csathó, P., Magyar, M., Debreczeni, K. & Sárdi, K. 2002. Correlation between soil P and corn leaf P contents in a network of Hungarian long-term field trials. Communications in Soil Science and Plant Analysis. 33. 30853103.

    • Search Google Scholar
    • Export Citation
  • Cserháti, S. 1901. General and Special Plant Production II. Magyar-Óvár. Czéh Sándor-féle Könyvnyomda. (In Hungarian)

  • Debreczeni, B. & Debreczeni, K. (Eds.) 1994. Fertilization Research, 1960–1990. Akadémiai Kiadó, Budapest. (In Hungarian)

  • Debreczeni, K. & Németh, T. (Eds.) 2009. Results of the National Long-Term Fertilization Experiments (NLTFE) Network (1967–2001). Akadémiai Kiadó, Budapest. (In Hungarian)

    • Search Google Scholar
    • Export Citation
  • Egnér, H., Riehm, H. & Domingo, W. R. 1960. Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden. II. K. Lantbr. Högsk. Ann. 26. 199215.

    • Search Google Scholar
    • Export Citation
  • Elek, É. & Kádár, I. 1980. Sampling methodology of permanent and field crops for nutrient status diagnostic purposes. MÉM NAK. Budapest. 55 pp. (In Hungarian).

    • Search Google Scholar
    • Export Citation
  • Győrffy, B. 1979. The effect of species, plant density and fertilizers in maize production in Hungary. Agrártud. Közl. 33. 309331. (In Hungarian)

    • Search Google Scholar
    • Export Citation
  • Kádár, I. 1980. The application of plant analysis in fertilizer recommendation systems. Agrokémia és Talajtan. 29. 323344. (In Hungarian)

    • Search Google Scholar
    • Export Citation
  • Kádár, I. 1987. The nutrient supply of maize (in Hungarian). Növénytermelés. 36. 5766. (In Hungarian)

  • Kádár, I. 1992. Principles and Methods of Crop Nutrition. MTA TAKI-AKAPRINT, Budapest. (In Hungarian)

  • Kádár, I. 2005. The characterization of the Zn and Cu supply of Hungary based on soil and plant tests. Acta Agronomica Óváriensis. 47. 1125. (In Hungarian)

    • Search Google Scholar
    • Export Citation
  • Kádár, I. 2013. Lessons learned from the long-term field experiment set up in the Mez őföld region. MTA ATK TAKI, Budapest. (In Hungarian)

    • Search Google Scholar
    • Export Citation
  • Martens, D.C. & Lindsay, W. L. 1990. Testing soils for copper, iron, manganese and zinc. In Soil Testing and Plant Analysis. 3rd ed. SSSA Book Series. No. 3 edited by Westerman, R. Mengel, K. & Kirkby, E.A. 1987. Principles of Plant Nutrition. International Potash Institute.

    • Search Google Scholar
    • Export Citation
  • MSZ-20135:1999 Standard . Determination of the soluble nutrient element content of the soil. Hungarian Office for Standards.

  • Nagy, J. 2006. Maize Production. Akadémiai Kiadó, Budapest.

  • Németh, T. 2006. Application of the Bray-Mitscherlich equation approach for economically and environmentally sound fertilization of field crops in Hungary. Communications in Soil Science and Plant Analysis. 37. 22272247.

    • Search Google Scholar
    • Export Citation
  • Ragab, S.M. 1980. Phosphorus effects on zinc translocation in maize. Communications in Soil Science and Plant Analysis. 11. 11051127.

    • Search Google Scholar
    • Export Citation
  • Sarkadi, J. 1975. Principles for Estimating Fertilizer Demands. Mezőgazdasági Kiadó, Budapest. (In Hungarian)

  • Sigmond, E. & Flóderer, S. 1905. Study on the nutrition and development of maize. Kísérletügyi Közlemények. 8. 786842. (In Hungarian)

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: Szili-Kovács, Tibor

Technical Editor(s): Vass, Csaba

Section Editors

  • Filep, Tibor (Csillagászati és Földtudományi Központ, Földrajztudományi Intézet, Budapest) - soil chemistry, soil pollution
  • Makó, András (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil physics
  • Pásztor, László (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil mapping, spatial and spectral modelling
  • Ragályi, Péter (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - agrochemistry and plant nutrition
  • Rajkai, Kálmán (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil water flow modelling
  • Szili-Kovács Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil biology and biochemistry

Editorial Board

  • Bidló, András (Soproni Egyetem, Erdőmérnöki Kar, Környezet- és Földtudományi Intézet, Sopron)
  • Blaskó, Lajos (Debreceni Egyetem, Agrár Kutatóintézetek és Tangazdaság, Karcagi Kutatóintézet, Karcag)
  • Buzás, István (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)
  • Dobos, Endre (Miskolci Egyetem, Természetföldrajz-Környezettan Tanszék, Miskolc)
  • Fodor, Nándor (Agrártudományi Kutatóközpont, Mezőgazdasági Intézet, Martonvásár)
  • Győri, Zoltán (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Imréné Takács Tünde (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Jolánkai, Márton (Magyar Agrár- és Élettudományi Egyetem, Növénytermesztési-tudományok Intézet, Gödöllő)
  • Kátai, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Lehoczky, Éva (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Michéli, Erika (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Rékási, Márk (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Schmidt, Rezső (Széchenyi István Egyetem, Mezőgazdaság- és Élelmiszertudományi Kar, Mosonmagyaróvár)
  • Tamás, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Tóth, Gergely (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Zoltán (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)

International Editorial Board

  • Blum, Winfried E. H. (Institute for Soil Research, University of Natural Resources and Life Sciences (BOKU), Wien, Austria)
  • Hofman, Georges (Department of Soil Management, Ghent University, Gent, Belgium)
  • Horn, Rainer (Institute of Plant Nutrition and Soil Science, Christian Albrechts University, Kiel, Germany)
  • Inubushi, Kazuyuki (Graduate School of Horticulture, Chiba University, Japan)
  • Kätterer, Thomas (Swedish University of Agricultural Sciences (SLU), Sweden)
  • Lichner, Ljubomir (Institute of Hydrology, Slovak Academy of Sciences, Bratislava, Slovak Republic)
  • Nemes, Attila (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Pachepsky, Yakov (Environmental Microbial and Food Safety Lab USDA, Beltsville, MD, USA)
  • Simota, Catalin Cristian (The Academy of Agricultural and Forestry Sciences, Bucharest, Romania)
  • Stolte, Jannes (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Wendroth, Ole (Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, USA)

Szili-Kovács, Tibor
ATK Talajtani Intézet
Herman Ottó út 15., H-1022 Budapest, Hungary
Phone: (+36 1) 212 2265
Fax: (+36 1) 485 5217
E-mail: editorial.agrokemia@atk.hu

Indexing and Abstracting Services:

  • CAB Abstracts
  • CABELLS Journalytics
  • CABI
  • EMBiology
  • Global Health
  • SCOPUS

2022  
Web of Science  
Total Cites
WoS
not indexed
Journal Impact Factor not indexed
Rank by Impact Factor

not indexed

Impact Factor
without
Journal Self Cites
not indexed
5 Year
Impact Factor
not indexed
Journal Citation Indicator not indexed
Rank by Journal Citation Indicator

not indexed

Scimago  
Scimago
H-index
10
Scimago
Journal Rank
0.151
Scimago Quartile Score

Agronomy and Crop Science (Q4)
Soil Science (Q4)

Scopus  
Scopus
Cite Score
0.6
Scopus
CIte Score Rank
Agronomy and Crop Science 335/376 (11th PCTL)
Soil Science 134/147 (9th PCTL)
Scopus
SNIP
0.263

2021  
Web of Science  
Total Cites
WoS
not indexed
Journal Impact Factor not indexed
Rank by Impact Factor

not indexed

Impact Factor
without
Journal Self Cites
not indexed
5 Year
Impact Factor
not indexed
Journal Citation Indicator not indexed
Rank by Journal Citation Indicator

not indexed

Scimago  
Scimago
H-index
10
Scimago
Journal Rank
0,138
Scimago Quartile Score Agronomy and Crop Science (Q4)
Soil Science (Q4)
Scopus  
Scopus
Cite Score
0,8
Scopus
CIte Score Rank
Agronomy and Crop Science 290/370 (Q4)
Soil Science 118/145 (Q4)
Scopus
SNIP
0,077

2020  
Scimago
H-index
9
Scimago
Journal Rank
0,179
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
48/73=0,7
Scopus
Cite Score Rank
Agronomy and Crop Science 278/347 (Q4)
Soil Science 108/135 (Q4)
Scopus
SNIP
0,18
Scopus
Cites
48
Scopus
Documents
6
Days from submission to acceptance 130
Days from acceptance to publication 152
Acceptance
Rate
65%

 

2019  
Scimago
H-index
9
Scimago
Journal Rank
0,204
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
49/88=0,6
Scopus
Cite Score Rank
Agronomy and Crop Science 276/334 (Q4)
Soil Science 104/126 (Q4)
Scopus
SNIP
0,423
Scopus
Cites
96
Scopus
Documents
27
Acceptance
Rate
91%

 

Agrokémia és Talajtan
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 150 EUR / 198 USD
Print + online subscription: 170 EUR / 236 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Agrokémia és Talajtan
Language Hungarian, English
Size B5
Year of
Foundation
1951
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0002-1873 (Print)
ISSN 1588-2713 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2023 4 142 0
Nov 2023 20 43 0
Dec 2023 201 21 3
Jan 2024 140 41 3
Feb 2024 158 6 0
Mar 2024 121 0 0
Apr 2024 29 0 0