Rambutan (Nephelium lappaceum) production is growing worldwide so the treatment and utilization of Rambutan by-products has become a concern of manufacturers. The objective of this study was to evaluate the potential application of rhizobacteria to decompose Rambutan peel for organic fertilizer production. After the rhizospheric soil samples were selectively proliferated and preadded on agar medium containing only Rambutan peel, the rhizobacterial colony isolates were screened based on their ability to grow on this agar medium and then to degrade cellulose in Rambutan peel. The LD7.3 isolate from the Rambutan rhizosphere showed the highest efficiency in degrading Rambutan peel with 5.6% degraded cellulose content and was identified by the MALDI-TOF technique as belonging to Klebsiella. Klebsiella sp. LD7.3 grew well and maintained the same degrading activity after three times of subculturing in liquid medium. Notably, the supplementation of grinded Rambutan fruit peel to the liquid medium had a positive effect on the growth and the degrading activity of Klebsiella sp. LD7.3. This was the primary report on the application of rhizobacteria to degrade Rambutan peel and the results showed that this was a potential approach to reuse this waste source.
AHEMAD, M. & KHAN, Md. S., 2011. Toxicological effects of selective herbicides on plant growth promoting activities of phosphate solubilizing Klebsiella sp. strain PS19. Current Microbiology. 62. 532–538.
AMPAPON, T. & WANAPAT, M., 2020. Dietary rambutan peel powder as a rumen modifier in beef cattle. Asian-Australasian Journal of Animal Sciences. 33. 763–769.
ANBUSELVI, S. & JEYANTHI, R., 2009. A comparative study on the biodegradation of coir waste by three different species of marine Cyanobacteria. Journal of Applied Sciences Research. 5. (12) 2369–2374.
BARBOSA, K. L., MALTA, V. R. DOS S., MACHADO, S. S., JUNIOR, G. A. L., DA SILVA, A. P. V., ALMEIDA, R. M. R. G., DA LUZ, J. M. R., 2020. Bacterial cellulase from the intestinal tract of the sugarcane borer. International Journal of Biological Macromolecules. 162. 441–448.
CANTABELLA, D., DOLCET-SANJUAN, R., SOLSONA, C., VILANOVA, L., TORRES, R., TEIXIDÓ, N., 2021. Optimization of a food industry-waste-based medium for the production of the plant growth promoting microorganism Pseudomonas oryzihabitans PGP01 based on agro-food industries by-products. Biotechnology Reports. 32. e00675
DAR, M. A., SHAIKH, A. A., PAWAR, K. D., PANDIT, R. S., 2018. Exploring the gut of Helicoverpa armigera for cellulose degrading bacteria and evaluation of a potential strain for lignocellulosic biomass deconstruction. Process Biochemistry. 73. 142–153.
DHAKED, B. S., TRIVENI, S., REDDY, R. S., PADMAJA, G., 2017. Isolation and screening of potassium and zinc solubilizing bacteria from different rhizosphere soil. International Journal of Current Microbioly and Applied Sciences. 6. (8) 1271–1281.
ELSAWEY, H., PATZ, S., NEMR, R. A., SARHAN, M. S., HAMZA, M. S., YOUSSEF, H. H., ABDELFADEEL, M. R., DAANAA, H-S. A., EL-TAHAN, M., ABBAS, M., FAYEZ, M., WITZEL, K., RUPPEL, S., HEGAZI, N. A., 2020. Plant broth- (not bovine-) based culture media provide the most compatible vegan nutrition for in vitro culturing and in situ probing of plant microbiota. Diversity. 12. (11) 418.
FENG, S., JIN, L., TANG, S., JIAN, Y., LI, Z., 2022. Combination of rhizosphere bacteria isolated from resistant potato plants for biocontrol of potato late blight. Pest Management Science. 78. 166–176.
FISCHER, S. E., FISCHER, S. I., MAGRIS, S., MORI, G. B., 2007. Isolation and characterization of bacteria from the rhizosphere of wheat. World Journal of Microbioly and Biotechnology. 23. 895–903.
FOUGHALIA, A., BOUAOUD, Y., CHANDEYSSON, C., DJEDIDI, M., TAHIRINE, M., AISSAT, K., NICOT, P., 2022. Acinetobacter calcoaceticus SJ19 and Bacillus safensis SJ4, two Algerian rhizobacteria protecting tomato plants against Botrytis cinerea and promoting their growth. Egyptian Journal of Biological Pest Control. 32. 12.
GUPTA, P., SAMANT, K., SAHU, A., 2012. Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential, International Journal of Microbiology. 2012. 578925.
HARINDINTWALI, J. D., ZHOU, J., HABIMANA, I., DONG, X., SUN, C., NWAMBA, M. C., YANG, W., YU, X., 2021. Biotechnological potential of cellulolytic nitrogen-fixing Klebsiella sp. C-3 isolated from paddy soil. Bioresource Technology Reports, 13. (1) 1–6.
ISO 6541:1981. Agricultural food products-Determination of crude fibre content-Modified Scharrer method.
JAHN, U., GALLENBERGER, M., PAPER, W., JUNGLAS, B., EISENREICH, W., STETTER, K. O., RACHEL, R., HUBER, H., 2007. Nanoarchaeum equitans and Ignicoccus hospitalis: New insights into a unique, intimate association of two archaea. Journal of Bacteriology. 190. (5) 1743–1750.
KUMAR, G., LAL, S., MAURYA, S. K., BHATTACHERJEE, A. K., CHAUDHARY, P., GANGOLA, S., RAJAN, S., 2021. Exploration of Klebsiella pneumoniae M6 for paclobutrazol degradation, plant growth attributes, and biocontrol action under subtropical ecosystem. PLoS ONE. 16. (12) e0261338.
LENCHENKO, E., BLUMENKRANTS, D., SACHIVKINA, N., SHADROVA, N., IBRAGIMOVA, A., 2020. Morphological and adhesive properties of Klebsiella pneumoniae biofilms. Veterinary World. 13. (1) 197–200.
LISDIANA, YUNIASTUTI, A., KUSFITASARI, A., 2019. Analysis of vitamin C and mineral content on rambutan peels exstract. Journal of Physics: Conference Series. 1321. 032133.
MAHMOOD, K., FAZILAH, A., YANG, T. A., SULAIMAN, S., KAMILAH, H., 2018. Valorization of rambutan (Nephelium lappaceum) by-products: Food and non-food perspectives. International Food Research Journal. 25. (3) 890–902.
MISTRIYANI RIYANTO, S., ROHMAN, A., 2017. Antioxidant activities of Rambutan (Nephelium lappaceum L) peel in vitro. Food Research. 2. (1) 119–123.
MOËNNE-LOCCOZ, Y., MAVINGUI, P., COMBES, P., NORMAND, P., STEINBERG, C., 2014. Microorganisms and biotic interactions. In: BERTRAND, J. C., CAUMETTE, P., LEBARON, P., MATHERON, R., NORMAND, P., SIME-NGANDO, T. (eds). Environmental microbiology: Fundamentals and applications. Springer, Dordrecht, pp. 395–444.
MOURAD, E. F., SARHAN, M. S., DAANAA, H-S. A., ABDOU, M., MORSI, A. T., ABDELFADEEL, M. R., ELSAWEY, H., NEMR, R., EL-TAHAN, M., HAMZA, M. A., ABBAS, M., YOUSSEF, H. H., ABDELHADI, A. A., AMER, W. M., FAYEZ, M., RUPPEL, S., HEGAZI, N. A., 2018. Plant materials are sustainable substrates supporting new technologies of plant-only-based culture media for in vitro culturing of the plant microbiota. Microbes and Environments. 33. (1) 40–49.
NGO, T. P., DUONG, H. V., CAO, N. D., BUI, T. V., 2021. Cellulose degrading ability of bacterial strains isolated from gut of termites in Vinhlong province – Vietnam. Chemical Engineering Transactions. 88. 1315–1320.
NGUYEN, B. L. & HOANG, A. T. P., 2020. Screening of cellulolytic Actinomycetes for decomposition of agricultural waste. Chemical Engineering Transactions. 78. 283–288.
PATTNAIK, S., MOHAPATRA, B., GUPTA, A., 2021. Plant growth-promoting microbe mediated uptake of essential nutrients (Fe, P, K) for crop stress management: Microbe–soil–plant continuum. Frontiers in Agronomy. 3. 689972.
PUTRI, C. H., JANICA, L., JANNAH, M., ARIANA, P. P., TANSY, R. V., WARDHANA, Y. R., 2017. Utilization of dragon fruit peel waste as microbial growth media. Proceedings of the 10th CISAK. 137. 91–95.
RODRIGUES, A. A., FORZANI, M. V., SOARES, R. DE S., SIBOV, S. T., VIEIRA, J. D. G., 2016. Isolation and selection of plant growth-promoting bacteria associated with sugarcane. Pesquisa Agropecuária Tropical. 46. (2) 149–158.
SACHDEV, D. P., CHAUDHARI, H. G., KASTURE, V. M., DHAVALE, D. D., CHOPADE, B. A., 2009. Isolation and characterization of indole acetic acid (IAA) producing Klebsiella pneumoniae strains from rhizosphere of wheat (Triticum aestivum) and their effect on plant growth. Indian Journal of Experimental Biology. 47. (12) 993–1000.
SAPRE, S., GONTIA-MISHRA, I. and TIWARI, S., 2018. Klebsiella sp. confers enhanced tolerance to salinity and plant growth promotion in oat seedlings (Avena sativa). Microbiological Research. 206. 25–32.
SINGHAL, N., KUMAR, M., PKANAUJIA, K., VIRDI, J.S., 2015. MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis. Frontiers of Microbiology. 6. 791.
TADTONG, S., ATHIKOMKULCHAI, S., WORACHANON, P., CHALONGPOL, P., CHAICHANACHAICHAN, P., SAREEDENCHAI, V., 2011. Antibacterial activities of rambutan peel extract. Journal of Health Research. 25. (1) 35–37.
TILAK, K. V. B. R., RANGANAYAKI, N., PAL, K. K., DE, R., SAXENA, A. K., NAUTIYAL, C. S., MITTAL, S., TRIPATHI, A. K., JOHRI, B. N., 2005. Diversity of plant growth and soil health supporting bacteria. Current Science. 89. (1) 136–150.
WAGHMARE, P. R., KSHIRSAGAR, S. D., SARATALE, R. G., GOVINDWAR, S. P., SARATALE, G. D., 2014. Production and characterization of cellulolytic enzymes by isolated Klebsiella sp. PRW–1 using agricultural waste biomass. Emirates Journal of Food and Agriculture. 26. (1) 44–59.
WATSUJI, T., KATO, T., UEDA, K., BEPPU, T., 2006. CO2 supply induces the growth of Symbiobacterium thermophilum, a syntrophic bacterium. Bioscience, Biotechnology, and Biochemistry. 70. (3) 753–756.
YOUSSEF, H. H., HAMZA, M. A., FAYEZ, M., MOURAD, E. F., SALEH, M. Y., SARHAN, M. S., SUKER, R. M., ELTAHLAWY, A. A., NEMR, R. A., EL-TAHAN, M., RUPPEL, S., HEGAZI, N. A., 2016. Plant-based culture media: Efficiently support culturing rhizobacteria and correctly mirror their in-situ diversity. Journal of Advanced Research. 7. (2) 305–316.
ZEHR, J. P., JENKINS, B. D., SHORT, S. M., STEWARD, G. F., 2003. Nitrogenase gene diversity and microbial community structure: A cross-system comparison. Environmental Microbiology. 5. (7) 539–554.
ZHANG, Z., SHAH, M. S., MOHAMED, H., TSIKLAURI, N., SONG, Y., 2021. Isolation and screening of microorganisms for the effective pretreatment of lignocellulosic agricultural wastes. BioMed Research International. 2021. 5514745.