The rice plant is sensitive to soil salinity. Calcium (Ca) acts as an ameliorative agent that helps plants induce salt tolerance. This study was carried out with a comparison of the ameliorative effect of calcium on salt-stressed rice seedlings, the determination of the role of salt-responsive protein groups, and the analysis of their genetic expressions in 21-day-old rice seedlings of ten locally cultivable varieties of West Bengal. For this study, 15-day-old seedlings were treated with 200 mM of sodium chloride (NaCl) solutions along with 10 mM of calcium sulfate (CaSO4) treatment. The determination of the relationship between the salt-responsive proteins and the analysis of the gene expression of those corresponding proteins were not carried out earlier on the selected ten locally cultivable rice varieties of West Bengal. The NaCl crystals were visible on the abaxial leaf surface of salt-stressed rice seedlings. The superoxide dismutase activity was increased in rice varieties, and a similar result was also expressed with calcium treatment. The fourier transform infrared spectroscopy-attenuated total reflection spectral result gave strong evidence for the presence of several salt-tolerant proteins and their genetic expression. STRING database results have suggested that the calcium treatment, coupled with the expression of the CBL4 protein, has regulated the P5CR protein of proline biosynthesis for better salt tolerance and osmotic protection. The quantitative real-time polymerase chain reaction and SDS-PAGE gel electrophoresis analysis showed that salt-tolerant varieties, Chinsurah_nona_1, and Jarava had high calcium signaling mechanisms and osmo-protection abilities.
AHMAD, P., SARWAT, M., BHAT, N., A., WANI, M., R., KAZI, A., G., TRAN L., S., 2015. Alleviation of cadmium toxicity in Brassica juncea L. (Czern. &Coss.) by calcium application involves various physiological and biochemical strategies. PloS One. 10. (1) e0114571.
ALSCHER, R., G., ERTURK, N., HEATH, L., S., 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany. 53. (372) 1331–1341.
ARORA, S., SHARMA, V., 2017. Reclamation and management of salt-affected soils for safeguarding agricultural productivity. Journal of Safe Agriculture. 1. (1) 1–10.
ASHBURNER, M., BALL, C., A., BLAKE, J., A., BOTSTEIN, D., BUTLER, H., CHERRY, J., M., DAVIS, A., P., DOLINSKI, K., DWIGHT, S., S., EPPIG J., T., HARRIS, M., A., 2000. Gene ontology: tool for the unification of biology. Nature Genetics 25. (1) 25–29.
BERARDINI, T., Z., REISER, L., LI, D., MEZHERITSKY, Y., MULLER, R., STRAIT, E., HUALA, E., 2015. The Arabidopsis information resource: making and mining the “gold standard” annotated reference plant genome. Genesis. 8. 474–485.
BERWAL, M., RAM, C., 2018. Superoxide dismutase: A stable biochemical marker for abiotic stress tolerance in higher plants. In: DE OLIVEIRA, A., B. (ed.) Abiotic and biotic stress in plants. Intech Open.
BRADFORD, M., M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72. 248–254.
CHA-UM, S., SINGH, H., P., SAMPHUMPHUANG, T., KIRDMANEE, C., 2012. Calcium-alleviated salt tolerance in indica rice ('Oryza sativa' L. Spp.'indica'). Physiological and morphological changes. Australian Journal of Crop Science. 6. (1) 176–182.
ÇELIK, Ö., ÇAKIR, B.C., ATAK, Ç. 2019. Identification of the antioxidant defense genes which may provide enhanced salt tolerance in Oryza sativa L. Physiology and Molecular Biology of Plants. 25. (1) 85–99.
DHINDSA, R., S., PLUMB-DHINDSA, P., A., THORPE, T., A., 1981. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany. 32. (1) 93–101.
DUNN, F., E., MINDERHOUD, P., S., 2022. Sedimentation strategies provide effective but limited mitigation of relative sea-level rise in the Mekong delta. Communications Earth & Environment 3. (1) 2.
EL MAHI, H., PÉREZ-HORMAECHE, J., DE LUCA, A., VILLALTA, I., ESPARTERO, J., GÁMEZARJONA, F., FERNÁNDEZ, J., L., BUNDÓ, M., MENDOZA, I., MIEULET, D., LALANNE, E., 2019. A critical role of sodium flux via the plasma membrane Na+/H+ exchanger SOS1 in the salt tolerance of rice. Plant Physiology. 180. (2) 1046–1065.
FAROOQ, M., PARK, J.R., JANG, Y.H., KIM, E.G., KIM, K.M. 2021. Rice Cultivars Under Salt Stress Show Differential Expression of Genes Related to the Regulation of Na+/K+ Balance. Front. Plant Sci. 12. 680131.
FORLANI, G., MAKAROVA, K., S., RUSZKOWSKI, M., BERTAZZINI, M., NOCEK, B., 2015. Evolution of plant δ1-pyrroline-5-carboxylate reductases from phylogenetic and structural perspectives. Frontiers in Plant Science. 6. 567.
FRANCESCHINI, A., SZKLARCZYK, D., FRANKILD, S., KUHN, M., SIMONOVIC, M., ROTH, A., LIN, J., MINGUEZ, P., BORK, P., VON MERING, C., JENSEN, L., J., 2013. STRING v9. 1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Research. 41. (D1) D808–D815.
GABALLAH, M., S., ABOU, B., LEILA, H., EL-ZEINY, A., KHALIL, S., 2007. Estimating the performance of salt stressed sesame plant treated with antitranspirants. Journal of Applied Sciences Research. 3. (9) 811–817.
GANIE, S., A., MOLLA, K., A., HENRY, R., J., BHAT, K., V., MONDAL, T., K., 2019. Advances in understanding salt tolerance in rice. TAG. Theoretical and Applied Genetics. 132. (4) 851–870.
GASTEIGER, E., HOOGLAND, C., GATTIKER, A., DUVAUD, S., E., WILKINS, M., R., APPEL, R., D., BAIROCH, A., 2005. Protein identification and analysis tools on the ExPASy server. In: WALKER, J.M. (ed) The proteomics protocols handbook. Springer Protocols Handbooks. Humana Press. pp. 571–607.
GILL, S.S., TUTEJA, N., 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Plant Physiology and Biochemistry. 48. (12). 909–930.
GOLLDACK, D., QUIGLEY, F., MICHALOWSKI, C., B., KAMASANI, U., R., BOHNERT, H., J., 2003. Salinity stress-tolerant and-sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently. Plant Molecular Biology. 51. (1) 71–81.
GOROSPE, C., M., HAN, S., H., KIM, S., G., PARK, J., Y., KANG, C., H., JEONG, J., H., SO, J., S., 2013. Effects of different calcium salts on calcium carbonate crystal formation by Sporosarcina pasteurii KCTC 3558. Biotechnology and Bioprocess Engineering. 18. (5) 903–908.
GARCIADEBLÁS, B., SENN, M., E., BAÑUELOS, M., A., RODRÍGUEZ-NAVARRO, A., 2003. Sodium transport and HKT transporters: the rice model. The Plant Journal. 34. 788–801.
GUPTA, B., HUANG, B., 2014. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics. 2014. 701596.
HAQUE, M., BISWAS, M., MOSHARAF, M., K., ISLAM, M., NAHAR, K., SHOZIB, H., B., 2022. Halotolerant biofilm-producing rhizobacteria mitigate seawater-induced salt stress and promote growth of tomato. Scientific Reports. 12. (1) 5599.
HAKIM, M., A., JURAIMI, A., S., HANAFI, M., M., ISMAIL, M., R., SELAMAT, A., RAFII, M., Y., LATIF, M., A., 2014. Biochemical and anatomical changes and yield reduction in rice (Oryza sativa L.) under varied salinity regimes. BioMed Research International. 2014. 208584.
HAUSER, F., HORIE, T., 2010. A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant, Cell & Environment. 33. (4) 552–565.
HOAGLAND, D., R., ARNON, D., I., 1950. The water-culture method for growing plants without soil. Circular 347. California Agricultural Experimental Station. The College of Agricultural University of California, Berkeley, CA.
HOANG, T., M., L., WILLIAMS, B., KHANNA, H., DALE, J., MUNDREE, S., G., 2014. Physiological basis of salt stress tolerance in rice expressing the anti-apoptotic gene SfIAP. Functional Plant Biology. 41. (11) 1168–1177.
HU, C-A., A., DELAUNEY, A., J., VERMA, D., P., S., 1992. A bifunctional enzyme (delta 1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proceedings of the National. Academy of Sciences of the USA. 89. 9354–9358.
ISLAM, M., T., HASHIDOKO, Y., DEORA, A., ITO, T., TAHARA, S., 2005. Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soilborne Peronosporomycetes. Applied and Environmental Microbioly. 71. (7) 3786–3796.
JABNOUNE, M., ESPEOUT, S., MIEULET, D., FIZAMES, C., VERDEIL, J., L., CONÉJÉRO, G., RODRÍGUEZ-NAVARRO, A., SENTENAC, H., GUIDERDONI, E., ABDELLY, C., VÉRY, A., A., 2009. Diversity in expression patterns and functional properties in the rice HKT transporter family. Plant Physiology. 150. (4) 1955–1971.
JAMIL, A., RIAZ, S., ASHRAF, M., FOOLAD, M., R., 2011. Gene expression profiling of plants under salt stress. Critical Reviews in Plant Sciences. 30. (5) 435–458.
JI, Y., TU, P., WANG, K., GAO, F., YANG, W., ZHU, Y., LI, S., 2014. Defining reference genes for quantitative real-time PCR analysis of anther development in rice. Acta Biochimicha et Biophysica Sinica. 46. (4) 305–312.
KAUPPINEN, J., PARTANEN, J., 2001. Fourier transforms in spectroscopy. Wiley-VCH, Weinheim, Germany.
KHAN, M., N., SIDDIQUI, M., H., MOHAMMAD, F., NAEEM, M., 2012. Interactive role of nitric oxide and calcium chloride in enhancing tolerance to salt stress. Nitric Oxide. 27. (4) 210–218.
KIM, B-R., NAM, H-Y., KIM, S-U., KIM, S-I., CHANG, Y-J. 2003. Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotechnology Letters. 252. (1) 1869–1872.
KIM, C., BRESSAN, R. 2016. A computational analysis of Salt Overly Sensitive 1 homologs in halophytes and glycophytes. PeerJ. Preprint 1668.
KONG-NGERN, K., DADUANG, S., WONGKHAM, C., BUNNAG, S., KOSITTRAKUN, M., THEERAKULPISUT, P., 2005. Protein profiles in response to salt stress in leaf sheaths of rice seedlings. ScienceAsia. 31. 403–408.
LATA, C., KUMAR, A., SHARMA, S. K., SINGH, J., SHEOKAND, S., MANN, A., RANI, B., 2017. Tolerance to combined boron and salt stress in wheat varieties: Biochemical and molecular analyses. Indian Journal of Experimental Biology 55. (05) 321–328.
LEE, D., REDFERN, O., ORENGO, C., 2007a. Predicting protein function from sequence and structure. Nature Reviews Molecular Cell Biology. 8. (12) 995–1005.
LEE, D., G., AHSAN, N., LEE, S., H., KANG, K., Y., BAHK, J., D., LEE, I., J., LEE, B., H., 2007b. A proteomic approach in analyzing heat‐responsive proteins in rice leaves. Proteomics. 7. (18) 3369–3383.
LIU, C., W., HSU, Y., K., CHENG, Y., H., YEN, H., C., WU, Y., P., WANG, C., S., LAI, C., C., 2012. Proteomic analysis of salt-responsive ubiquitin-related proteins in rice roots. Rapid Communications in Mass Spectrometry. 26. (15) 1649–1660.
LIU, C., MAO, B., YUAN, D., CHU, C., DUAN, M 2022. Salt tolerance in rice: Physiological responses and molecular mechanisms. Crop. J. 10(1).13-25.
LIU, Y., WANG, B., LI, J., SONG, Z., LU, B., CHI, M., YANG, B., QIN, D., LAM, Y., W., LI, J., XU, D., 2017. Salt response analysis in two rice cultivars at seedling stage. Acta physiologiae Plantanarum. 39. (10) 215.
LIVAK, K., J., SCHMITTGEN, T., D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 25. (4) 402–408.
LUAN, S., 2009. The CBL–CIPK network in plant calcium signaling. Trends in PlantScience. 14. (1) 37–42.
MANDAL, S., RAJU, R., KUMAR, A., KUMAR, P., SHARMA, P., C., 2018. Current status of research, technology response and policy needs of salt-affected soils in India-A review. Journal of the Indian Society of Coastal Agricultural Research. 36. 40–53.
MARTÍNEZ-ATIENZA, J., JIANG, X., GARCIADEBLAS, B., MENDOZA, I., ZHU, J., K., PARDO, J., M., QUINTERO, F., J., 2007. Conservation of the salt overly sensitive pathway in rice. Plant Physiology. 143. (2) 1001–1012.
MILLER, A., K., NIELSEN, B., L., 2021. Analysis of gene expression changes in plants grown in salty soil in response to inoculation with Halophilic Bacteria. International Journal of Molecular Sciences. 22. (7) 3611.
MUKHERJEE, A., VANDYCK, J., BLANPAIN, B., GUO, M., 2017. CSLM study on the interaction of Nd2O3 with CaCl2 and CaF2-LiF molten melts. Journal of Materials Science. 52. 1717–1726.
MUNNS, R., TESTER, M. 2008. Mechanisms of Salinity Tolerance. Annual Review of Plant Biology. 59. 651–681.
MURGUÍA, J., R., BELLÉS, J., M., SERRANO, R., 1995. A salt-sensitive 3′2′), 5′-Bisphosphate nucleotidase involved in sulfate activation. Science. 267. 232–234.
NARA, M., MORII, H., TANOKURA, M. 2013. Coordination to divalent cations by calcium-binding proteins studied by FTIR spectroscopy. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1828. (10) 2319–2327.
NKONYA, E., MIRZABAEV, A., VON BRAUN, J., 2016. Economics of land degradation in Sub-Saharan Africa. In: NKONYA, E., MIRZABAEV, A., VON BRAUN, J. (eds.) Economics of land degradation and improvement–a global assessment for sustainable development. Springer, Cham. pp. 215–259.
ORNAMI, E., N., HAMMES, P., S., 2006. Ameliorative effects of calcium on growth and mineral uptake of salt-stressed amaranth. South African Journal of Plant and Soil. 23. (3) 197–202.
PATEL, B., B., DAVE, R., S., 2011. Studies on infiltration of saline-alkali soils of several parts of Mehsana and Patan districts of North Gujarat. Journal of Applied Technology in Environmental Sanitation. 1. (1) 87–92.
PUSKA, M., YLI-URPO, A., VALLITTU, P., AIROLA, K., 2005. Synthesis and characterization of polyamide of trans-4-hydroxy-L-proline used as porogen filler in acrylic bone cement. Journal of Biomaterials Applications. 19. (4) 287–301.
QIU, Q-S., GUO, Y., DIETRICH, M., A., SCHUMAKER, K., S., ZHU, J-K., 2002. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceedings of the National Academy of Sciences of the USA. 99. (12) 8436–8441.
RAHMAN, M., M., PENNY, G., MONDAL, M., S., ZAMAN, M., H., KRYSTON, A., SALEHIN, M., NAHAR, Q., ISLAM, M., S., BOLSTER, D., TANK, J., L., MÜLLER, M., F., 2019. Salinization in large river deltas: Drivers, impacts and socio-hydrological feedbacks. Water Security. 6. 100024.
RAHMAN, A., NAHAR, K., HASANUZZAMAN, M., FUJITA, M., 2016. Calcium supplementation improves Na+/K+ ratio, antioxidant defense and glyoxalase systems in salt-stressed rice seedlings. Frontiers in Plant Science. 7. 609.
REN, Z., H., GAO, J., P., LI, L., G., CAI, X., L., HUANG, W., CHAO, D., Y., ZHU, M., Z., WANG, Z., Y., LUAN, S., LIN, H., X., 2005. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics. 37. (10) 1141–1146.
ROY, S., CHAKRABORTY, U., 2018. Role of sodium ion transporters and osmotic adjustments in stress alleviation of Cynodondactylon under NaCl treatment: a parallel investigation with rice. Protoplasma. 255. (1) 175–191.
SCHOLANDER, P., F., HAMMEL, H., T., HEMMINGSEN, E., GAREY, W., 1962. Salt balance in mangroves. Plant Physiology. 37. (6) 722.
SAHI, C., SINGH, A., KUMAR, K., BLUMWALD, E., GROVER, A., 2006. Salt stress response in rice: genetics, molecular biology, and comparative genomics. Functional & Integrative Genomics. 6. 263–284.
SHARMA, D., K., SINGH, A., 2015. Salinity research in India–achievements, challenges and future prospects. Water and Energy International. 58. (6) 35–45.
SHI, H., QUINTERO, F., J., PARDO, J., M., ZHU, J., K., 2002. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. The Plant Cell. 14. (2) 465–477.
SHINOZAKI, K., YAMAGUCHI-SHINOZAKI, K. (eds.), 1999. Molecular responses to cold drought, heat, and salt stress in higher plants. Landes Bioscience, Austin, TX.
SHORESH, M., SPIVAK, M., BERNSTEIN, N., 2011. Involvement of calcium-mediated effects on ROS metabolism in the regulation of growth improvement under salinity. Free Radical Biology and Medicine. 51. (6) 1221–1234.
SHTAYA, M.J., YASIN, A., FATOOM, J., JEBREEN, M., 2019. The effect of salinity on leaf relative water content and chlorophyll content of three wheat (Triticum aestivum L.) landraces from Palestine. Hebron University Research Journal (A) 8. 57–65.
SINGH, A., SAGAR, S., BISWAS, D., K., 2017. Calcium dependent protein kinase, a versatile player in plant stress management and development. Critical Reviews in Plant Sciences. 36. (5–6) 336–352.
SINGH, B., CHATTERJEE, R., DATTA, N., BANERJEE, S., 2021. Analysis of physiological and spectral parameters on different Oryza sativa L. Varieties under iron stress. Contributii Botanice. 55.119–133.
SINGH, B., BANERJEE, S. 2020. Effect of calcium salts on salinity stress on morphology and biochemical estimation of rice seedlings In: RAMKRISHNA, D., SENGUPTA, S., BANDYOPADHYAY, S., D., GHOSH, A. (eds.) Advances in bioprocess engineering and technology: Select proceedings ICABET 2020. Springer Nature, Singapore. pp. 305–315
SRIVASTAVA, R.K., PANDEY, P., RAJPOOT, R., RANI, A., GAUTAM, A., DUBEY, R., 2015. Exogenous application of calcium and silica alleviates cadmium toxicity by suppressing oxidative damage in rice seedlings. Protoplasma. 252. (4) 959–975.
SUREWICZ, W., K., MANTSCH, H., H., CHAPMAN, D., 1993. Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment. Biochemistry. 32. (2) 389–394.
SURIYA-ARUNROJ, D., SUPAPOJ, N., TOOJINDA, T., VANAVICHIT, A., 2004. Relative leaf water content as an efficient method for evaluating rice cultivars for tolerance to salt stress. Science Asia. 30. 411–415.
TULI, L., RESSOM, H., W., 2009. LC-MS based detection of differential protein expression. Journal of Proteomics & Bioinformatics. 2. 416–438.
UOZUMI, N., DREYER, I., 2012. Structure–function correlates in plant ion channels. Comprehensive Biophysics. 6. 234–245.
WANG, J., P., MUNYAMPUNDU, J., P., XU, Y., P., CAI, X., Z., 2015a. Phylogeny of plant calcium and calmodulin-dependent protein kinases (CCaMKs) and functional analyses of tomato CCaMK in disease resistance. Frontiers in Plant Science. 6. 1075.
WANG, B., JIN, P., YUE, Y., JI, S., LI, Y., LUO, H., 2015b. Synthesis of NaCl single crystals with defined morphologies as templates for fabricating hollow nano/micro-structures. RSC Advances. 5. (7). 5072–5076.
WU, X., RIAZ, M., YAN, L., DU, C., LIU, Y., JIANG, C., 2017. Boron deficiency in trifoliate orange induces changes in pectin composition and architecture of components in root cell walls. Frontiers in Plant Science. 8. 1882.
YANG, C., ZHANG, T., WANG, H., ZHAO, N., LIU, B., 2012. Heritable alteration in salt-tolerance in rice induced by introgression from wild rice (Zizania latifolia). Rice. 5. (1) 1–2.
YANG, J., YEN, H., E., 2002. Early salt stress effects on the changes in chemical composition in leaves of ice plant and Arabidopsis. A Fourier transform infrared spectroscopy study. Plant Physiology. 130. (2) 1032–1042.