Authors:
Banhishikha Singh Department of Biotechnology, Heritage Institute of Technology, Kolkata, India

Search for other papers by Banhishikha Singh in
Current site
Google Scholar
PubMed
Close
,
Anuvab Chatterjee Department of Biotechnology, Heritage Institute of Technology, Kolkata, India

Search for other papers by Anuvab Chatterjee in
Current site
Google Scholar
PubMed
Close
,
Rajeshwari Chatterjee Department of Chemical Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India

Search for other papers by Rajeshwari Chatterjee in
Current site
Google Scholar
PubMed
Close
,
Mou Chatterjee Department of Biotechnology, Heritage Institute of Technology, Kolkata, India

Search for other papers by Mou Chatterjee in
Current site
Google Scholar
PubMed
Close
, and
Soma Banerjee Department of Biotechnology, Heritage Institute of Technology, Kolkata, India

Search for other papers by Soma Banerjee in
Current site
Google Scholar
PubMed
Close
Restricted access

The rice plant is sensitive to soil salinity. Calcium (Ca) acts as an ameliorative agent that helps plants induce salt tolerance. This study was carried out with a comparison of the ameliorative effect of calcium on salt-stressed rice seedlings, the determination of the role of salt-responsive protein groups, and the analysis of their genetic expressions in 21-day-old rice seedlings of ten locally cultivable varieties of West Bengal. For this study, 15-day-old seedlings were treated with 200 mM of sodium chloride (NaCl) solutions along with 10 mM of calcium sulfate (CaSO4) treatment. The determination of the relationship between the salt-responsive proteins and the analysis of the gene expression of those corresponding proteins were not carried out earlier on the selected ten locally cultivable rice varieties of West Bengal. The NaCl crystals were visible on the abaxial leaf surface of salt-stressed rice seedlings. The superoxide dismutase activity was increased in rice varieties, and a similar result was also expressed with calcium treatment. The fourier transform infrared spectroscopy-attenuated total reflection spectral result gave strong evidence for the presence of several salt-tolerant proteins and their genetic expression. STRING database results have suggested that the calcium treatment, coupled with the expression of the CBL4 protein, has regulated the P5CR protein of proline biosynthesis for better salt tolerance and osmotic protection. The quantitative real-time polymerase chain reaction and SDS-PAGE gel electrophoresis analysis showed that salt-tolerant varieties, Chinsurah_nona_1, and Jarava had high calcium signaling mechanisms and osmo-protection abilities.

  • AHMAD, P., SARWAT, M., BHAT, N., A., WANI, M., R., KAZI, A., G., TRAN L., S., 2015. Alleviation of cadmium toxicity in Brassica juncea L. (Czern. &Coss.) by calcium application involves various physiological and biochemical strategies. PloS One. 10. (1) e0114571.

    • Search Google Scholar
    • Export Citation
  • ALSCHER, R., G., ERTURK, N., HEATH, L., S., 2002. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany. 53. (372) 13311341.

    • Search Google Scholar
    • Export Citation
  • ARORA, S., SHARMA, V., 2017. Reclamation and management of salt-affected soils for safeguarding agricultural productivity. Journal of Safe Agriculture. 1. (1) 110.

    • Search Google Scholar
    • Export Citation
  • ASHBURNER, M., BALL, C., A., BLAKE, J., A., BOTSTEIN, D., BUTLER, H., CHERRY, J., M., DAVIS, A., P., DOLINSKI, K., DWIGHT, S., S., EPPIG J., T., HARRIS, M., A., 2000. Gene ontology: tool for the unification of biology. Nature Genetics 25. (1) 2529.

    • Search Google Scholar
    • Export Citation
  • BERARDINI, T., Z., REISER, L., LI, D., MEZHERITSKY, Y., MULLER, R., STRAIT, E., HUALA, E., 2015. The Arabidopsis information resource: making and mining the “gold standard” annotated reference plant genome. Genesis. 8. 474485.

    • Search Google Scholar
    • Export Citation
  • BERWAL, M., RAM, C., 2018. Superoxide dismutase: A stable biochemical marker for abiotic stress tolerance in higher plants. In: DE OLIVEIRA, A., B. (ed.) Abiotic and biotic stress in plants. Intech Open.

    • Search Google Scholar
    • Export Citation
  • BRADFORD, M., M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72. 248254.

    • Search Google Scholar
    • Export Citation
  • CHA-UM, S., SINGH, H., P., SAMPHUMPHUANG, T., KIRDMANEE, C., 2012. Calcium-alleviated salt tolerance in indica rice ('Oryza sativa' L. Spp.'indica'). Physiological and morphological changes. Australian Journal of Crop Science. 6. (1) 176182.

    • Search Google Scholar
    • Export Citation
  • ÇELIK, Ö., ÇAKIR, B.C., ATAK, Ç. 2019. Identification of the antioxidant defense genes which may provide enhanced salt tolerance in Oryza sativa L. Physiology and Molecular Biology of Plants. 25. (1) 8599.

    • Search Google Scholar
    • Export Citation
  • DHINDSA, R., S., PLUMB-DHINDSA, P., A., THORPE, T., A., 1981. Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany. 32. (1) 93101.

    • Search Google Scholar
    • Export Citation
  • DUNN, F., E., MINDERHOUD, P., S., 2022. Sedimentation strategies provide effective but limited mitigation of relative sea-level rise in the Mekong delta. Communications Earth & Environment 3. (1) 2.

    • Search Google Scholar
    • Export Citation
  • EL MAHI, H., PÉREZ-HORMAECHE, J., DE LUCA, A., VILLALTA, I., ESPARTERO, J., GÁMEZARJONA, F., FERNÁNDEZ, J., L., BUNDÓ, M., MENDOZA, I., MIEULET, D., LALANNE, E., 2019. A critical role of sodium flux via the plasma membrane Na+/H+ exchanger SOS1 in the salt tolerance of rice. Plant Physiology. 180. (2) 10461065.

    • Search Google Scholar
    • Export Citation
  • FAROOQ, M., PARK, J.R., JANG, Y.H., KIM, E.G., KIM, K.M. 2021. Rice Cultivars Under Salt Stress Show Differential Expression of Genes Related to the Regulation of Na+/K+ Balance. Front. Plant Sci. 12. 680131.

    • Search Google Scholar
    • Export Citation
  • FORLANI, G., MAKAROVA, K., S., RUSZKOWSKI, M., BERTAZZINI, M., NOCEK, B., 2015. Evolution of plant δ1-pyrroline-5-carboxylate reductases from phylogenetic and structural perspectives. Frontiers in Plant Science. 6. 567.

    • Search Google Scholar
    • Export Citation
  • FRANCESCHINI, A., SZKLARCZYK, D., FRANKILD, S., KUHN, M., SIMONOVIC, M., ROTH, A., LIN, J., MINGUEZ, P., BORK, P., VON MERING, C., JENSEN, L., J., 2013. STRING v9. 1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Research. 41. (D1) D808D815.

    • Search Google Scholar
    • Export Citation
  • GABALLAH, M., S., ABOU, B., LEILA, H., EL-ZEINY, A., KHALIL, S., 2007. Estimating the performance of salt stressed sesame plant treated with antitranspirants. Journal of Applied Sciences Research. 3. (9) 811817.

    • Search Google Scholar
    • Export Citation
  • GANIE, S., A., MOLLA, K., A., HENRY, R., J., BHAT, K., V., MONDAL, T., K., 2019. Advances in understanding salt tolerance in rice. TAG. Theoretical and Applied Genetics. 132. (4) 851870.

    • Search Google Scholar
    • Export Citation
  • GASTEIGER, E., HOOGLAND, C., GATTIKER, A., DUVAUD, S., E., WILKINS, M., R., APPEL, R., D., BAIROCH, A., 2005. Protein identification and analysis tools on the ExPASy server. In: WALKER, J.M. (ed) The proteomics protocols handbook. Springer Protocols Handbooks. Humana Press. pp. 571607.

    • Search Google Scholar
    • Export Citation
  • GILL, S.S., TUTEJA, N., 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Plant Physiology and Biochemistry. 48. (12). 909930.

    • Search Google Scholar
    • Export Citation
  • GOLLDACK, D., QUIGLEY, F., MICHALOWSKI, C., B., KAMASANI, U., R., BOHNERT, H., J., 2003. Salinity stress-tolerant and-sensitive rice (Oryza sativa L.) regulate AKT1-type potassium channel transcripts differently. Plant Molecular Biology. 51. (1) 7181.

    • Search Google Scholar
    • Export Citation
  • GOROSPE, C., M., HAN, S., H., KIM, S., G., PARK, J., Y., KANG, C., H., JEONG, J., H., SO, J., S., 2013. Effects of different calcium salts on calcium carbonate crystal formation by Sporosarcina pasteurii KCTC 3558. Biotechnology and Bioprocess Engineering. 18. (5) 903908.

    • Search Google Scholar
    • Export Citation
  • GARCIADEBLÁS, B., SENN, M., E., BAÑUELOS, M., A., RODRÍGUEZ-NAVARRO, A., 2003. Sodium transport and HKT transporters: the rice model. The Plant Journal. 34. 788801.

    • Search Google Scholar
    • Export Citation
  • GUPTA, B., HUANG, B., 2014. Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. International Journal of Genomics. 2014. 701596.

    • Search Google Scholar
    • Export Citation
  • HAQUE, M., BISWAS, M., MOSHARAF, M., K., ISLAM, M., NAHAR, K., SHOZIB, H., B., 2022. Halotolerant biofilm-producing rhizobacteria mitigate seawater-induced salt stress and promote growth of tomato. Scientific Reports. 12. (1) 5599.

    • Search Google Scholar
    • Export Citation
  • HAKIM, M., A., JURAIMI, A., S., HANAFI, M., M., ISMAIL, M., R., SELAMAT, A., RAFII, M., Y., LATIF, M., A., 2014. Biochemical and anatomical changes and yield reduction in rice (Oryza sativa L.) under varied salinity regimes. BioMed Research International. 2014. 208584.

    • Search Google Scholar
    • Export Citation
  • HAUSER, F., HORIE, T., 2010. A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant, Cell & Environment. 33. (4) 552565.

    • Search Google Scholar
    • Export Citation
  • HOAGLAND, D., R., ARNON, D., I., 1950. The water-culture method for growing plants without soil. Circular 347. California Agricultural Experimental Station. The College of Agricultural University of California, Berkeley, CA.

    • Search Google Scholar
    • Export Citation
  • HOANG, T., M., L., WILLIAMS, B., KHANNA, H., DALE, J., MUNDREE, S., G., 2014. Physiological basis of salt stress tolerance in rice expressing the anti-apoptotic gene SfIAP. Functional Plant Biology. 41. (11) 11681177.

    • Search Google Scholar
    • Export Citation
  • HU, C-A., A., DELAUNEY, A., J., VERMA, D., P., S., 1992. A bifunctional enzyme (delta 1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proceedings of the National. Academy of Sciences of the USA. 89. 93549358.

    • Search Google Scholar
    • Export Citation
  • ISLAM, M., T., HASHIDOKO, Y., DEORA, A., ITO, T., TAHARA, S., 2005. Suppression of damping-off disease in host plants by the rhizoplane bacterium Lysobacter sp. strain SB-K88 is linked to plant colonization and antibiosis against soilborne Peronosporomycetes. Applied and Environmental Microbioly. 71. (7) 37863796.

    • Search Google Scholar
    • Export Citation
  • JABNOUNE, M., ESPEOUT, S., MIEULET, D., FIZAMES, C., VERDEIL, J., L., CONÉJÉRO, G., RODRÍGUEZ-NAVARRO, A., SENTENAC, H., GUIDERDONI, E., ABDELLY, C., VÉRY, A., A., 2009. Diversity in expression patterns and functional properties in the rice HKT transporter family. Plant Physiology. 150. (4) 19551971.

    • Search Google Scholar
    • Export Citation
  • JAMIL, A., RIAZ, S., ASHRAF, M., FOOLAD, M., R., 2011. Gene expression profiling of plants under salt stress. Critical Reviews in Plant Sciences. 30. (5) 435458.

    • Search Google Scholar
    • Export Citation
  • JI, Y., TU, P., WANG, K., GAO, F., YANG, W., ZHU, Y., LI, S., 2014. Defining reference genes for quantitative real-time PCR analysis of anther development in rice. Acta Biochimicha et Biophysica Sinica. 46. (4) 305312.

    • Search Google Scholar
    • Export Citation
  • KAUPPINEN, J., PARTANEN, J., 2001. Fourier transforms in spectroscopy. Wiley-VCH, Weinheim, Germany.

  • KHAN, M., N., SIDDIQUI, M., H., MOHAMMAD, F., NAEEM, M., 2012. Interactive role of nitric oxide and calcium chloride in enhancing tolerance to salt stress. Nitric Oxide. 27. (4) 210218.

    • Search Google Scholar
    • Export Citation
  • KIM, B-R., NAM, H-Y., KIM, S-U., KIM, S-I., CHANG, Y-J. 2003. Normalization of reverse transcription quantitative-PCR with housekeeping genes in rice. Biotechnology Letters. 252. (1) 18691872.

    • Search Google Scholar
    • Export Citation
  • KIM, C., BRESSAN, R. 2016. A computational analysis of Salt Overly Sensitive 1 homologs in halophytes and glycophytes. PeerJ. Preprint 1668.

    • Search Google Scholar
    • Export Citation
  • KONG-NGERN, K., DADUANG, S., WONGKHAM, C., BUNNAG, S., KOSITTRAKUN, M., THEERAKULPISUT, P., 2005. Protein profiles in response to salt stress in leaf sheaths of rice seedlings. ScienceAsia. 31. 403408.

    • Search Google Scholar
    • Export Citation
  • LATA, C., KUMAR, A., SHARMA, S. K., SINGH, J., SHEOKAND, S., MANN, A., RANI, B., 2017. Tolerance to combined boron and salt stress in wheat varieties: Biochemical and molecular analyses. Indian Journal of Experimental Biology 55. (05) 321328.

    • Search Google Scholar
    • Export Citation
  • LEE, D., REDFERN, O., ORENGO, C., 2007a. Predicting protein function from sequence and structure. Nature Reviews Molecular Cell Biology. 8. (12) 9951005.

    • Search Google Scholar
    • Export Citation
  • LEE, D., G., AHSAN, N., LEE, S., H., KANG, K., Y., BAHK, J., D., LEE, I., J., LEE, B., H., 2007b. A proteomic approach in analyzing heat‐responsive proteins in rice leaves. Proteomics. 7. (18) 33693383.

    • Search Google Scholar
    • Export Citation
  • LIU, C., W., HSU, Y., K., CHENG, Y., H., YEN, H., C., WU, Y., P., WANG, C., S., LAI, C., C., 2012. Proteomic analysis of salt-responsive ubiquitin-related proteins in rice roots. Rapid Communications in Mass Spectrometry. 26. (15) 16491660.

    • Search Google Scholar
    • Export Citation
  • LIU, C., MAO, B., YUAN, D., CHU, C., DUAN, M 2022. Salt tolerance in rice: Physiological responses and molecular mechanisms. Crop. J. 10(1).13-25.

    • Search Google Scholar
    • Export Citation
  • LIU, Y., WANG, B., LI, J., SONG, Z., LU, B., CHI, M., YANG, B., QIN, D., LAM, Y., W., LI, J., XU, D., 2017. Salt response analysis in two rice cultivars at seedling stage. Acta physiologiae Plantanarum. 39. (10) 215.

    • Search Google Scholar
    • Export Citation
  • LIVAK, K., J., SCHMITTGEN, T., D., 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 25. (4) 402408.

    • Search Google Scholar
    • Export Citation
  • LUAN, S., 2009. The CBL–CIPK network in plant calcium signaling. Trends in PlantScience. 14. (1) 3742.

  • MANDAL, S., RAJU, R., KUMAR, A., KUMAR, P., SHARMA, P., C., 2018. Current status of research, technology response and policy needs of salt-affected soils in India-A review. Journal of the Indian Society of Coastal Agricultural Research. 36. 4053.

    • Search Google Scholar
    • Export Citation
  • MARTÍNEZ-ATIENZA, J., JIANG, X., GARCIADEBLAS, B., MENDOZA, I., ZHU, J., K., PARDO, J., M., QUINTERO, F., J., 2007. Conservation of the salt overly sensitive pathway in rice. Plant Physiology. 143. (2) 10011012.

    • Search Google Scholar
    • Export Citation
  • MILLER, A., K., NIELSEN, B., L., 2021. Analysis of gene expression changes in plants grown in salty soil in response to inoculation with Halophilic Bacteria. International Journal of Molecular Sciences. 22. (7) 3611.

    • Search Google Scholar
    • Export Citation
  • MUKHERJEE, A., VANDYCK, J., BLANPAIN, B., GUO, M., 2017. CSLM study on the interaction of Nd2O3 with CaCl2 and CaF2-LiF molten melts. Journal of Materials Science. 52. 17171726.

    • Search Google Scholar
    • Export Citation
  • MUNNS, R., TESTER, M. 2008. Mechanisms of Salinity Tolerance. Annual Review of Plant Biology. 59. 651681.

  • MURGUÍA, J., R., BELLÉS, J., M., SERRANO, R., 1995. A salt-sensitive 3′2′), 5′-Bisphosphate nucleotidase involved in sulfate activation. Science. 267. 232234.

    • Search Google Scholar
    • Export Citation
  • NARA, M., MORII, H., TANOKURA, M. 2013. Coordination to divalent cations by calcium-binding proteins studied by FTIR spectroscopy. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1828. (10) 23192327.

    • Search Google Scholar
    • Export Citation
  • NKONYA, E., MIRZABAEV, A., VON BRAUN, J., 2016. Economics of land degradation in Sub-Saharan Africa. In: NKONYA, E., MIRZABAEV, A., VON BRAUN, J. (eds.) Economics of land degradation and improvement–a global assessment for sustainable development. Springer, Cham. pp. 215259.

    • Search Google Scholar
    • Export Citation
  • ORNAMI, E., N., HAMMES, P., S., 2006. Ameliorative effects of calcium on growth and mineral uptake of salt-stressed amaranth. South African Journal of Plant and Soil. 23. (3) 197202.

    • Search Google Scholar
    • Export Citation
  • PATEL, B., B., DAVE, R., S., 2011. Studies on infiltration of saline-alkali soils of several parts of Mehsana and Patan districts of North Gujarat. Journal of Applied Technology in Environmental Sanitation. 1. (1) 8792.

    • Search Google Scholar
    • Export Citation
  • PUSKA, M., YLI-URPO, A., VALLITTU, P., AIROLA, K., 2005. Synthesis and characterization of polyamide of trans-4-hydroxy-L-proline used as porogen filler in acrylic bone cement. Journal of Biomaterials Applications. 19. (4) 287301.

    • Search Google Scholar
    • Export Citation
  • QIU, Q-S., GUO, Y., DIETRICH, M., A., SCHUMAKER, K., S., ZHU, J-K., 2002. Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proceedings of the National Academy of Sciences of the USA. 99. (12) 84368441.

    • Search Google Scholar
    • Export Citation
  • RAHMAN, M., M., PENNY, G., MONDAL, M., S., ZAMAN, M., H., KRYSTON, A., SALEHIN, M., NAHAR, Q., ISLAM, M., S., BOLSTER, D., TANK, J., L., MÜLLER, M., F., 2019. Salinization in large river deltas: Drivers, impacts and socio-hydrological feedbacks. Water Security. 6. 100024.

    • Search Google Scholar
    • Export Citation
  • RAHMAN, A., NAHAR, K., HASANUZZAMAN, M., FUJITA, M., 2016. Calcium supplementation improves Na+/K+ ratio, antioxidant defense and glyoxalase systems in salt-stressed rice seedlings. Frontiers in Plant Science. 7. 609.

    • Search Google Scholar
    • Export Citation
  • REN, Z., H., GAO, J., P., LI, L., G., CAI, X., L., HUANG, W., CHAO, D., Y., ZHU, M., Z., WANG, Z., Y., LUAN, S., LIN, H., X., 2005. A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nature Genetics. 37. (10) 11411146.

    • Search Google Scholar
    • Export Citation
  • ROY, S., CHAKRABORTY, U., 2018. Role of sodium ion transporters and osmotic adjustments in stress alleviation of Cynodondactylon under NaCl treatment: a parallel investigation with rice. Protoplasma. 255. (1) 175191.

    • Search Google Scholar
    • Export Citation
  • SCHOLANDER, P., F., HAMMEL, H., T., HEMMINGSEN, E., GAREY, W., 1962. Salt balance in mangroves. Plant Physiology. 37. (6) 722.

  • SAHI, C., SINGH, A., KUMAR, K., BLUMWALD, E., GROVER, A., 2006. Salt stress response in rice: genetics, molecular biology, and comparative genomics. Functional & Integrative Genomics. 6. 263284.

    • Search Google Scholar
    • Export Citation
  • SHARMA, D., K., SINGH, A., 2015. Salinity research in India–achievements, challenges and future prospects. Water and Energy International. 58. (6) 3545.

    • Search Google Scholar
    • Export Citation
  • SHI, H., QUINTERO, F., J., PARDO, J., M., ZHU, J., K., 2002. The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. The Plant Cell. 14. (2) 465477.

    • Search Google Scholar
    • Export Citation
  • SHINOZAKI, K., YAMAGUCHI-SHINOZAKI, K. (eds.), 1999. Molecular responses to cold drought, heat, and salt stress in higher plants. Landes Bioscience, Austin, TX.

    • Search Google Scholar
    • Export Citation
  • SHORESH, M., SPIVAK, M., BERNSTEIN, N., 2011. Involvement of calcium-mediated effects on ROS metabolism in the regulation of growth improvement under salinity. Free Radical Biology and Medicine. 51. (6) 12211234.

    • Search Google Scholar
    • Export Citation
  • SHTAYA, M.J., YASIN, A., FATOOM, J., JEBREEN, M., 2019. The effect of salinity on leaf relative water content and chlorophyll content of three wheat (Triticum aestivum L.) landraces from Palestine. Hebron University Research Journal (A) 8. 5765.

    • Search Google Scholar
    • Export Citation
  • SINGH, A., SAGAR, S., BISWAS, D., K., 2017. Calcium dependent protein kinase, a versatile player in plant stress management and development. Critical Reviews in Plant Sciences. 36. (5–6) 336352.

    • Search Google Scholar
    • Export Citation
  • SINGH, B., CHATTERJEE, R., DATTA, N., BANERJEE, S., 2021. Analysis of physiological and spectral parameters on different Oryza sativa L. Varieties under iron stress. Contributii Botanice. 55.119133.

    • Search Google Scholar
    • Export Citation
  • SINGH, B., BANERJEE, S. 2020. Effect of calcium salts on salinity stress on morphology and biochemical estimation of rice seedlings In: RAMKRISHNA, D., SENGUPTA, S., BANDYOPADHYAY, S., D., GHOSH, A. (eds.) Advances in bioprocess engineering and technology: Select proceedings ICABET 2020. Springer Nature, Singapore. pp. 305315

    • Search Google Scholar
    • Export Citation
  • SRIVASTAVA, R.K., PANDEY, P., RAJPOOT, R., RANI, A., GAUTAM, A., DUBEY, R., 2015. Exogenous application of calcium and silica alleviates cadmium toxicity by suppressing oxidative damage in rice seedlings. Protoplasma. 252. (4) 959975.

    • Search Google Scholar
    • Export Citation
  • SUREWICZ, W., K., MANTSCH, H., H., CHAPMAN, D., 1993. Determination of protein secondary structure by Fourier transform infrared spectroscopy: a critical assessment. Biochemistry. 32. (2) 389394.

    • Search Google Scholar
    • Export Citation
  • SURIYA-ARUNROJ, D., SUPAPOJ, N., TOOJINDA, T., VANAVICHIT, A., 2004. Relative leaf water content as an efficient method for evaluating rice cultivars for tolerance to salt stress. Science Asia. 30. 411415.

    • Search Google Scholar
    • Export Citation
  • TULI, L., RESSOM, H., W., 2009. LC-MS based detection of differential protein expression. Journal of Proteomics & Bioinformatics. 2. 416438.

    • Search Google Scholar
    • Export Citation
  • UOZUMI, N., DREYER, I., 2012. Structure–function correlates in plant ion channels. Comprehensive Biophysics. 6. 234245.

  • WANG, J., P., MUNYAMPUNDU, J., P., XU, Y., P., CAI, X., Z., 2015a. Phylogeny of plant calcium and calmodulin-dependent protein kinases (CCaMKs) and functional analyses of tomato CCaMK in disease resistance. Frontiers in Plant Science. 6. 1075.

    • Search Google Scholar
    • Export Citation
  • WANG, B., JIN, P., YUE, Y., JI, S., LI, Y., LUO, H., 2015b. Synthesis of NaCl single crystals with defined morphologies as templates for fabricating hollow nano/micro-structures. RSC Advances. 5. (7). 50725076.

    • Search Google Scholar
    • Export Citation
  • WU, X., RIAZ, M., YAN, L., DU, C., LIU, Y., JIANG, C., 2017. Boron deficiency in trifoliate orange induces changes in pectin composition and architecture of components in root cell walls. Frontiers in Plant Science. 8. 1882.

    • Search Google Scholar
    • Export Citation
  • YANG, C., ZHANG, T., WANG, H., ZHAO, N., LIU, B., 2012. Heritable alteration in salt-tolerance in rice induced by introgression from wild rice (Zizania latifolia). Rice. 5. (1) 12.

    • Search Google Scholar
    • Export Citation
  • YANG, J., YEN, H., E., 2002. Early salt stress effects on the changes in chemical composition in leaves of ice plant and Arabidopsis. A Fourier transform infrared spectroscopy study. Plant Physiology. 130. (2) 10321042.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: Szili-Kovács, Tibor

Technical Editor(s): Vass, Csaba

Section Editors

  • Filep, Tibor (Csillagászati és Földtudományi Központ, Földrajztudományi Intézet, Budapest) - soil chemistry, soil pollution
  • Makó, András (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil physics
  • Pásztor, László (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil mapping, spatial and spectral modelling
  • Ragályi, Péter (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - agrochemistry and plant nutrition
  • Rajkai, Kálmán (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil water flow modelling
  • Szili-Kovács Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil biology and biochemistry

Editorial Board

  • Bidló, András (Soproni Egyetem, Erdőmérnöki Kar, Környezet- és Földtudományi Intézet, Sopron)
  • Blaskó, Lajos (Debreceni Egyetem, Agrár Kutatóintézetek és Tangazdaság, Karcagi Kutatóintézet, Karcag)
  • Buzás, István (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)
  • Dobos, Endre (Miskolci Egyetem, Természetföldrajz-Környezettan Tanszék, Miskolc)
  • Fodor, Nándor (Agrártudományi Kutatóközpont, Mezőgazdasági Intézet, Martonvásár)
  • Győri, Zoltán (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Imréné Takács Tünde (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Jolánkai, Márton (Magyar Agrár- és Élettudományi Egyetem, Növénytermesztési-tudományok Intézet, Gödöllő)
  • Kátai, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Lehoczky, Éva (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Michéli, Erika (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Rékási, Márk (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Schmidt, Rezső (Széchenyi István Egyetem, Mezőgazdaság- és Élelmiszertudományi Kar, Mosonmagyaróvár)
  • Tamás, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Tóth, Gergely (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Zoltán (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)

International Editorial Board

  • Blum, Winfried E. H. (Institute for Soil Research, University of Natural Resources and Life Sciences (BOKU), Wien, Austria)
  • Hofman, Georges (Department of Soil Management, Ghent University, Gent, Belgium)
  • Horn, Rainer (Institute of Plant Nutrition and Soil Science, Christian Albrechts University, Kiel, Germany)
  • Inubushi, Kazuyuki (Graduate School of Horticulture, Chiba University, Japan)
  • Kätterer, Thomas (Swedish University of Agricultural Sciences (SLU), Sweden)
  • Lichner, Ljubomir (Institute of Hydrology, Slovak Academy of Sciences, Bratislava, Slovak Republic)
  • Nemes, Attila (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Pachepsky, Yakov (Environmental Microbial and Food Safety Lab USDA, Beltsville, MD, USA)
  • Simota, Catalin Cristian (The Academy of Agricultural and Forestry Sciences, Bucharest, Romania)
  • Stolte, Jannes (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Wendroth, Ole (Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, USA)

Szili-Kovács, Tibor
ATK Talajtani Intézet
Herman Ottó út 15., H-1022 Budapest, Hungary
Phone: (+36 1) 212 2265
Fax: (+36 1) 485 5217
E-mail: editorial.agrokemia@atk.hu

Indexing and Abstracting Services:

  • CAB Abstracts
  • CABELLS Journalytics
  • CABI
  • EMBiology
  • Global Health
  • SCOPUS

2022  
Web of Science  
Total Cites
WoS
not indexed
Journal Impact Factor not indexed
Rank by Impact Factor

not indexed

Impact Factor
without
Journal Self Cites
not indexed
5 Year
Impact Factor
not indexed
Journal Citation Indicator not indexed
Rank by Journal Citation Indicator

not indexed

Scimago  
Scimago
H-index
10
Scimago
Journal Rank
0.151
Scimago Quartile Score

Agronomy and Crop Science (Q4)
Soil Science (Q4)

Scopus  
Scopus
Cite Score
0.6
Scopus
CIte Score Rank
Agronomy and Crop Science 335/376 (11th PCTL)
Soil Science 134/147 (9th PCTL)
Scopus
SNIP
0.263

2021  
Web of Science  
Total Cites
WoS
not indexed
Journal Impact Factor not indexed
Rank by Impact Factor

not indexed

Impact Factor
without
Journal Self Cites
not indexed
5 Year
Impact Factor
not indexed
Journal Citation Indicator not indexed
Rank by Journal Citation Indicator

not indexed

Scimago  
Scimago
H-index
10
Scimago
Journal Rank
0,138
Scimago Quartile Score Agronomy and Crop Science (Q4)
Soil Science (Q4)
Scopus  
Scopus
Cite Score
0,8
Scopus
CIte Score Rank
Agronomy and Crop Science 290/370 (Q4)
Soil Science 118/145 (Q4)
Scopus
SNIP
0,077

2020  
Scimago
H-index
9
Scimago
Journal Rank
0,179
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
48/73=0,7
Scopus
Cite Score Rank
Agronomy and Crop Science 278/347 (Q4)
Soil Science 108/135 (Q4)
Scopus
SNIP
0,18
Scopus
Cites
48
Scopus
Documents
6
Days from submission to acceptance 130
Days from acceptance to publication 152
Acceptance
Rate
65%

 

2019  
Scimago
H-index
9
Scimago
Journal Rank
0,204
Scimago
Quartile Score
Agronomy and Crop Science Q4
Soil Science Q4
Scopus
Cite Score
49/88=0,6
Scopus
Cite Score Rank
Agronomy and Crop Science 276/334 (Q4)
Soil Science 104/126 (Q4)
Scopus
SNIP
0,423
Scopus
Cites
96
Scopus
Documents
27
Acceptance
Rate
91%

 

Agrokémia és Talajtan
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 150 EUR / 198 USD
Print + online subscription: 170 EUR / 236 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Agrokémia és Talajtan
Language Hungarian, English
Size B5
Year of
Foundation
1951
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0002-1873 (Print)
ISSN 1588-2713 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Nov 2023 0 0 0
Dec 2023 0 0 0
Jan 2024 0 0 0
Feb 2024 0 0 0
Mar 2024 0 0 0
Apr 2024 139 8 10
May 2024 0 0 0