Authors:
Ebrahim Talebi Department of Animal Sciences, Darab Branch, Islamic Azad University, Darab, Iran

Search for other papers by Ebrahim Talebi in
Current site
Google Scholar
PubMed
Close
and
Hasan Haghighatnia Soil and Water Research Department, Fars Agricultural and Natural Resources Research and Education Center, AREEO, Darab, Fars, Iran

Search for other papers by Hasan Haghighatnia in
Current site
Google Scholar
PubMed
Close
Restricted access

This study explored the effects of salicylic acid on the growth and biochemical responses of peppermint (Mentha piperita L.) under different soil salinity levels, a major challenge in agricultural productivity. The experiment was conducted using a factorial design with salicylic acid applied at concentrations of 0, 5, 10, and 50 ppm, combined with sodium chloride-induced salinity at 0, 1,000, 2,000, and 3,000 mg kg–1 soil. Results demonstrated that increasing soil salinity negatively impacted plant growth, reducing plant height, leaf number, and the dry weight of aerial parts. Salinity stress also led to reduced nutrient uptake, particularly for essential elements like calcium and potassium, while increasing sodium levels in plant tissues. However, the foliar application of salicylic acid, especially at 50 ppm, significantly improved growth parameters and mitigated the detrimental effects of salinity. Notably, at the highest salinity level (3,000 mg kg–1), salicylic acid enhanced plant height by 11.1% and leaf number by 30.9% compared to untreated plants. Salicylic acid also boosted biochemical responses, such as increasing total phenolic and flavonoid content, which are critical for stress tolerance. This study underscores the potential of salicylic acid as a stress mitigator, promoting better growth and physiological resilience in peppermint under saline conditions, offering valuable insights for improving crop performance in salinity-affected regions.

  • ABDEL-AZIZ, S. M., AERON, A. & KAHIL, T. A., 2016. Health benefits and possible risks of herbal medicine. In: N. GARG, S. M. ABDEL-AZIZ & A. AERON (eds.), Microbes in food and health. Springer, Dordrecht. pp 97116.

    • Search Google Scholar
    • Export Citation
  • AHANGER, M. A. & AHMAD, P., 2019. Chapter 17 – Role of mineral nutrients in abiotic stress tolerance: Revisiting the associated signaling mechanisms. In: M. I. R. KHAN, P. S. REDDY, A. FERRANTE & N. A. KHAN (eds.), Plant Signaling Molecules. Woodhead Publishing, Chelmsford. pp. 269285.

    • Search Google Scholar
    • Export Citation
  • ALI, E., HUSSAIN, S., JALAL, F., KHAN, M. A., IMTIAZ, M., SAID, F., ISMAIL, M., KHAN, S., ALI, H. M., HATAMLEH, A. A., AL-DOSARY, M. A., MOSA, W. F. A. & SHAH, F., 2023. Salicylic acid-mitigates abiotic stress tolerance via altering defense mechanisms in Brassica napus L. Frontiers in plant science. 14. 1187260.

    • Search Google Scholar
    • Export Citation
  • AMALI, A. A., MERSHA, A. N., NOFAL, E. R., MURRAY, K., NOROUZI, S., SABOORY, S., SALO, H., CHEVURU, S. R., SARAI TABRIZI, M., REDDY, P. K., ABDULLAHI, A. O., FARAHANI, H., KOLHE, P., DOWLATI FARD, R., SALIK, A. W., HUSSEIN, A. H., NAJAFI, H., POORMOGHADAM, M. & ADIAHA, M., 2021. Non-conventional sources of agricultural water management: Insights from young professionals in the irrigation and drainage sector. Irrigation and Drainage. 70. (3) 524540.

    • Search Google Scholar
    • Export Citation
  • BIDALIA, A., VIKRAM, K., YAMAL, G. & RAO, K. S., 2019. Effect of salinity on soil nutrients and plant health. In: M. S. AKHTAR (ed.), Salt Stress, Microbes, and Plant Interactions: Causes and Solution: Volume 1. Springer, Singapore. pp. 273297.

    • Search Google Scholar
    • Export Citation
  • CHOI, G.-H., RO, J.-H., PARK, B.-J., LEE, D.-Y., CHEONG, M.-S., LEE, D.-Y., SEO, W.-D. & KIM, J. H. (2016). Benzaldehyde as a new class plant growth regulator on Brassica campestris. Journal of Applied Biological Chemistry. 59. (2) 159164.

    • Search Google Scholar
    • Export Citation
  • COATSWORTH, P., GONZALEZ-MACIA, L., COLLINS, A. S. P., BOZKURT, T. & GÜDER, F., 2023. Continuous monitoring of chemical signals in plants under stress. Nature Reviews Chemistry. 7. (1) 725.

    • Search Google Scholar
    • Export Citation
  • EL SABAGH, A., HOSSAIN, A., BARUTÇULAR, C., IQBAL, M. A., ISLAM, M. S., FAHAD, S., SYTAR, O., ÇIĞ, F., MEENA, R. S. & ERMAN, M., 2020. Consequences of salinity stress on the quality of crops and its mitigation strategies for sustainable crop production: An outlook of arid and semi-arid regions. In: S. FAHAD, M. HASANUZZAMAN, M. ALAM, H. ULLAH, M. SAEED, I. ALI KHAN & M. ADNAN (eds.), Environment, climate, plant and vegetation growth. Springer, Dordrecht. pp. 503533.

    • Search Google Scholar
    • Export Citation
  • EL SABAGH, A., ISLAM, M. S., SKALICKY, M., ALI RAZA, M., SINGH, K., ANWAR HOSSAIN, M., HOSSAIN, A., MAHBOOB, W., IQBAL, M. A., RATNASEKERA, D., SINGHAL, R. K., AHMED, S., KUMARI, A., WASAYA, A., SYTAR, O., BRESTIC, M., ÇIG, F., ERMAN, M., HABIB UR., RAHMAN, M., . . . ARSHAD, A., 2021. Salinity stress in wheat (Triticum aestivum L.) in the changing climate: Adaptation and management strategies [Review]. Frontiers in Agronomy. 3. 661932.

    • Search Google Scholar
    • Export Citation
  • ERASLAN, F., INAL, A., GUNES, A. & ALPASLAN, M., 2007. Impact of exogenous salicylic acid on the growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Scientia Horticulturae. 113. (2) 120128.

    • Search Google Scholar
    • Export Citation
  • ERASLAN, F., INAL, A., PILBEAM, D. J. & GUNES, A., 2008. Interactive effects of salicylic acid and silicon on oxidative damage and antioxidant activity in spinach (Spinacia oleracea L. cv. Matador) grown under boron toxicity and salinity. Plant Growth Regulation. 55. (3) 207219.

    • Search Google Scholar
    • Export Citation
  • EREN, H., PEKMEZCI, M. Y., OKAY, S., TURKTAS, M., INAL, B., ILHAN, E., ATAK, M., ERAYMAN, M. & UNVER, T., 2015. Hexaploid wheat (Triticum aestivum) root miRNome analysis in response to salt stress. Annals of Applied Biology. 167. (2) 208216.

    • Search Google Scholar
    • Export Citation
  • GHASSEMI-GOLEZANI, K. & FARHANGI-ABRIZ, S., 2018. Foliar sprays of salicylic acid and jasmonic acid stimulate H+-ATPase activity of tonoplast, nutrient uptake and salt tolerance of soybean. Ecotoxicology and Environmental Safety. 166. 1825.

    • Search Google Scholar
    • Export Citation
  • GILL, S. S. & TUTEJA, N., 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry. 48. (12) 909930.

    • Search Google Scholar
    • Export Citation
  • GUPTA, S. & SETH, C. S., 2021. Salicylic acid alleviates chromium (VI) toxicity by restricting its uptake, improving photosynthesis and augmenting antioxidant defense in Solanum lycopersicum L. Physiology and Molecular Biology of Plants. 27. (11) 26512664.

    • Search Google Scholar
    • Export Citation
  • HANIN, M., EBEL, C., NGOM, M., LAPLAZE, L. & MASMOUDI, K. (2016). New insights on plant salt tolerance mechanisms and their potential use for breeding [Review]. Frontiers in plant science. 7. 01787.

    • Search Google Scholar
    • Export Citation
  • HASANUZZAMAN, M., NAHAR, K., FUJITA, M., AHMAD, P., CHANDNA, R., PRASAD, M. N. V. & OZTURK, M., 2013. Enhancing plant productivity under salt stress: Relevance of polyomics. In: P. AHMAD, M. M. AZOOZ & M. N. V. PRASAD (eds.), Salt stress in plants: signalling, omics and adaptations. Springer, New York. pp. 113156.

    • Search Google Scholar
    • Export Citation
  • HOCKING, B., TYERMAN, S. D., BURTON, R. A. & GILLIHAM, M., 2016. Fruit calcium: Transport and physiology [Review]. Frontiers in plant science. 7. 00569.

    • Search Google Scholar
    • Export Citation
  • HOSSEINI, S. J., TAHMASEBI-SARVESTANI, Z., PIRDASHTI, H., MODARRES-SANAVY, S. A. M., MOKHTASSI-BIDGOLI, A., HAZRATI, S. & NICOLA, S., 2021. Investigation of yield, phytochemical composition, and photosynthetic pigments in different mint ecotypes under salinity stress. Food Science & Nutrition. 9. (5) 26202643.

    • Search Google Scholar
    • Export Citation
  • HUSSAIN, M. I., FAROOQ, M., MUSCOLO, A. & REHMAN, A., 2020. Crop diversification and saline water irrigation as potential strategies to save freshwater resources and reclamation of marginal soils–a review. Environmental Science and Pollution Research. 27. (23) 2869528729.

    • Search Google Scholar
    • Export Citation
  • JANDA, T., GONDOR, O. K., YORDANOVA, R., SZALAI, G. & PÁL, M., 2014. Salicylic acid and photosynthesis: signalling and effects. Acta physiologiae plantarum. 36. (10) 25372546.

    • Search Google Scholar
    • Export Citation
  • JOHNSON, J., COLLINS, T., WALSH, K. & NAIKER, M., 2020. Solvent extractions and spectrophotometric protocols for measuring the total anthocyanin, phenols and antioxidant content in plums. Chemical Papers. 74. (12) 44814492.

    • Search Google Scholar
    • Export Citation
  • KEREPESI, I. & GALIBA, G., 2000. Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop science. 40. (2) 482487.

    • Search Google Scholar
    • Export Citation
  • KHALIL, H. A., EL-ANSARY, D. O. & AHMED, Z. F. R., 2022. Mitigation of salinity stress on pomegranate (Punica granatum L. Cv. Wonderful) plant using salicylic acid foliar spray. Horticulturae. 8. (5) 375.

    • Search Google Scholar
    • Export Citation
  • KOEVOETS, I. T., VENEMA, J. H., ELZENGA, J. T. M. & TESTERINK, C., 2016. Roots withstanding their environment: Exploiting root system architecture responses to abiotic stress to improve crop tolerance [Review]. Frontiers in plant science, 7. 01335.

    • Search Google Scholar
    • Export Citation
  • LAMUELA-RAVENTÓS, R. M., 2018. Folin–Ciocalteu method for the measurement of total phenolic content and antioxidant capacity. In: RESAT, A., ESRA, C., FEREIDOON, S. (eds.), Measurement of Antioxidant Activity & Capacity. Wiley, New York. pp. 107115.

    • Search Google Scholar
    • Export Citation
  • LI, X., CHANG, S. X. & SALIFU, K. F., 2014. Soil texture and layering effects on water and salt dynamics in the presence of a water table: a review. Environmental reviews. 22. (1) 4150.

    • Search Google Scholar
    • Export Citation
  • LINIĆ, I., MLINARIĆ, S., BRKLJAČIĆ, L., PAVLOVIĆ, I., SMOLKO, A. & SALOPEK-SONDI, B., 2021. Ferulic acid and salicylic acid foliar treatments reduce short-term salt stress in chinese cabbage by increasing phenolic compounds accumulation and photosynthetic performance. Plants. 10. (11) 2346.

    • Search Google Scholar
    • Export Citation
  • MACHADO, R. M. A. & SERRALHEIRO, R. P., 2017. Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae. 3. (2) 30.

    • Search Google Scholar
    • Export Citation
  • MAJEED, A. & MUHAMMAD, Z., 2019. Salinity: a major agricultural problem— causes, impacts on crop productivity and management strategies. In: M. HASANUZZAMAN, K. R. HAKEEM, K. NAHAR, H. F. ALHARBY (eds.), Plant abiotic stress tolerance: Agronomic, molecular and biotechnological approaches. Springer, Cham. pp. 8399.

    • Search Google Scholar
    • Export Citation
  • MANSOUR, M. M. F., 2023. Anthocyanins: Biotechnological targets for enhancing crop tolerance to salinity stress. Scientia Horticulturae. 319. 112182.

    • Search Google Scholar
    • Export Citation
  • MCWILLIAM, J., 1986. The national and international importance of drought and salinity effects on agricultural production. Functional plant biology. 13. (1) 113.

    • Search Google Scholar
    • Export Citation
  • MILLER, G., SUZUKI, N., CIFTCI-YILMAZ, S. & MITTLER, R., 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, cell & environment. 33. (4) 453467.

    • Search Google Scholar
    • Export Citation
  • MUNNS, R., 2002. Comparative physiology of salt and water stress. Plant, cell & environment. 25. (2) 239250.

  • MUNNS, R., WALLACE, P. A., TEAKLE, N. L. & COLMER, T. D. (2010). Measuring soluble ion concentrations (Na+, K+, Cl) in salt-treated plants. In: R. SUNKAR (ed.), Plant stress tolerance: Methods and protocols. Humana Press, New York. pp. 371382.

    • Search Google Scholar
    • Export Citation
  • PABBY, A. K. & SASTRE, A. M., 2013. State-of-the-art review on hollow fibre contactor technology and membrane-based extraction processes. Journal of membrane science. 430. 263303.

    • Search Google Scholar
    • Export Citation
  • PARASURAMAN, S., 2018. Herbal drug discovery: challenges and perspectives. Current Pharmacogenomics and Personalized Medicine (Formerly Current Pharmacogenomics). 16. (1) 6368.

    • Search Google Scholar
    • Export Citation
  • PĘKAL, A. & PYRZYNSKA, K., 2014. Evaluation of aluminium complexation reaction for flavonoid content assay. Food Analytical Methods. 7. (9) 17761782.

    • Search Google Scholar
    • Export Citation
  • PER, T. S., FATMA, M., ASGHER, M., JAVIED, S. & KHAN, N. A., 2017. Salicylic acid and nutrients interplay in abiotic stress tolerance. In: R. NAZAR, N. IQBAL & N. A. KHAN (eds.), Salicylic acid: a multifaceted hormone. Springer, Singapore. pp. 221237.

    • Search Google Scholar
    • Export Citation
  • PETRIDIS, A., THERIOS, I., SAMOURIS, G. & TANANAKI, C., 2012. Salinity-induced changes in phenolic compounds in leaves and roots of four olive cultivars (Olea europaea L.) and their relationship to antioxidant activity. Environmental and Experimental Botany. 79. 3743.

    • Search Google Scholar
    • Export Citation
  • SHAKI, F., MABOUD, H. E. & NIKNAM, V., 2018. Growth enhancement and salt tolerance of Safflower (Carthamus tinctorius L.), by salicylic acid. Current Plant Biology. 13. 1622.

    • Search Google Scholar
    • Export Citation
  • SHARMA, A., KUMAR, V., SHAHZAD, B., RAMAKRISHNAN, M., SINGH SIDHU, G. P., BALI, A. S., HANDA, N., KAPOOR, D., YADAV, P., KHANNA, K., BAKSHI, P., REHMAN, A., KOHLI, S. K., KHAN, E. A., PARIHAR, R. D., YUAN, H., THUKRAL, A. K., BHARDWAJ, R. & ZHENG, B., 2020. Photosynthetic response of plants under different abiotic stresses: A review. Journal of Plant Growth Regulation, 39. (2) 509531.

    • Search Google Scholar
    • Export Citation
  • SHENAVAEI ZARE, M., ARMIN, M. & MARVI, H., 2021. Physiological responses of cotton to stress moderator application on different planting date under saline conditions. Iranian Journal of Science and Technology, Transactions A: Science. 45. (1) 1125.

    • Search Google Scholar
    • Export Citation
  • WANG, W., XU, J., FANG, H., LI, Z. & LI, M., 2020. Advances and challenges in medicinal plant breeding. Plant Science. 298. 110573.

  • WANI, A. B., CHADAR, H., WANI, A. H., SINGH, S. & UPADHYAY, N., 2017. Salicylic acid to decrease plant stress. Environmental Chemistry Letters. 15. (1) 101123.

    • Search Google Scholar
    • Export Citation
  • XIA, Q., TANG, H., FU, L., TAN, J., GOVINDJEE, G. & GUO, Y., 2023. Determination of Fv/Fm from Chlorophyll a fluorescence without dark adaptation by an LSSVM model. Plant Phenomics. 5. 0034.

    • Search Google Scholar
    • Export Citation
  • YILDIRIM, E., TURAN, M. & GUVENC, I., 2008. Effect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. Journal of Plant Nutrition. 31. (3) 593612.

    • Search Google Scholar
    • Export Citation
  • YU, X., LIANG, C., CHEN, J., QI, X., LIU, Y. & LI, W., 2015. The effects of salinity stress on morphological characteristics, mineral nutrient accumulation and essential oil yield and composition in Mentha canadensis L. Scientia Horticulturae. 197. 579583.

    • Search Google Scholar
    • Export Citation
  • ZHAO, G., MA, B. & REN, C., 2007. Growth, gas exchange, chlorophyll fluorescence, and ion content of naked oat in response to salinity. Crop science. 47. 123131.

    • Search Google Scholar
    • Export Citation
  • ZHOU, Y., ZHAO, H., LI, C., HE, P., PENG, W., YUAN, L., ZENG, L. & HE, Y., 2012. Colorimetric detection of Mn2+ using silver nanoparticles cofunctionalized with 4-mercaptobenzoic acid and melamine as a probe. Talanta. 97. 331335.

    • Search Google Scholar
    • Export Citation
  • ZÖRB, C., GEILFUS, C.-M. & DIETZ, K-J., 2019. Salinity and crop yield. Plant biology. 21. (S1) 3138.

  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: Szili-Kovács, Tibor

Technical Editor(s): Vass, Csaba

Section Editors

  • Filep, Tibor (Csillagászati és Földtudományi Központ, Földrajztudományi Intézet, Budapest) - soil chemistry, soil pollution
  • Makó, András (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil physics
  • Pásztor, László (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil mapping, spatial and spectral modelling
  • Ragályi, Péter (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - agrochemistry and plant nutrition
  • Rajkai, Kálmán (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil water flow modelling
  • Szili-Kovács Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil biology and biochemistry

Editorial Board

  • Bidló, András (Soproni Egyetem, Erdőmérnöki Kar, Környezet- és Földtudományi Intézet, Sopron)
  • Blaskó, Lajos (Debreceni Egyetem, Agrár Kutatóintézetek és Tangazdaság, Karcagi Kutatóintézet, Karcag)
  • Buzás, István (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)
  • Dobos, Endre (Miskolci Egyetem, Természetföldrajz-Környezettan Tanszék, Miskolc)
  • Fodor, Nándor (Agrártudományi Kutatóközpont, Mezőgazdasági Intézet, Martonvásár)
  • Győri, Zoltán (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Imréné Takács Tünde (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Jolánkai, Márton (Magyar Agrár- és Élettudományi Egyetem, Növénytermesztési-tudományok Intézet, Gödöllő)
  • Kátai, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Lehoczky, Éva (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Michéli, Erika (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Rékási, Márk (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Schmidt, Rezső (Széchenyi István Egyetem, Mezőgazdaság- és Élelmiszertudományi Kar, Mosonmagyaróvár)
  • Tamás, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Tóth, Gergely (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Zoltán (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)

International Editorial Board

  • Blum, Winfried E. H. (Institute for Soil Research, University of Natural Resources and Life Sciences (BOKU), Wien, Austria)
  • Hofman, Georges (Department of Soil Management, Ghent University, Gent, Belgium)
  • Horn, Rainer (Institute of Plant Nutrition and Soil Science, Christian Albrechts University, Kiel, Germany)
  • Inubushi, Kazuyuki (Graduate School of Horticulture, Chiba University, Japan)
  • Kätterer, Thomas (Swedish University of Agricultural Sciences (SLU), Sweden)
  • Lichner, Ljubomir (Institute of Hydrology, Slovak Academy of Sciences, Bratislava, Slovak Republic)
  • Nemes, Attila (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Pachepsky, Yakov (Environmental Microbial and Food Safety Lab USDA, Beltsville, MD, USA)
  • Simota, Catalin Cristian (The Academy of Agricultural and Forestry Sciences, Bucharest, Romania)
  • Stolte, Jannes (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Wendroth, Ole (Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, USA)

Szili-Kovács, Tibor
ATK Talajtani Intézet
Herman Ottó út 15., H-1022 Budapest, Hungary
Phone: (+36 1) 212 2265
Fax: (+36 1) 485 5217
E-mail: editorial.agrokemia@atk.hu

Indexing and Abstracting Services:

  • CAB Abstracts
  • CABELLS Journalytics
  • CABI
  • EMBiology
  • Global Health
  • SCOPUS

2023  
Scopus  
CiteScore 0.4
CiteScore rank Q4 (Agronomy and Crop Science)
SNIP 0.105
Scimago  
SJR index 0.151
SJR Q rank Q4

Agrokémia és Talajtan
Publication Model Hybrid
Online only
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 172 EUR / 198 USD (Online only)
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Agrokémia és Talajtan
Language Hungarian, English
Size B5
Year of
Foundation
1951
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0002-1873 (Print)
ISSN 1588-2713 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2024 0 0 0
Jun 2024 0 0 0
Jul 2024 0 0 0
Aug 2024 0 0 0
Sep 2024 0 0 0
Oct 2024 2092 4 2
Nov 2024 30982 16 4