This study explored the effects of salicylic acid on the growth and biochemical responses of peppermint (Mentha piperita L.) under different soil salinity levels, a major challenge in agricultural productivity. The experiment was conducted using a factorial design with salicylic acid applied at concentrations of 0, 5, 10, and 50 ppm, combined with sodium chloride-induced salinity at 0, 1,000, 2,000, and 3,000 mg kg–1 soil. Results demonstrated that increasing soil salinity negatively impacted plant growth, reducing plant height, leaf number, and the dry weight of aerial parts. Salinity stress also led to reduced nutrient uptake, particularly for essential elements like calcium and potassium, while increasing sodium levels in plant tissues. However, the foliar application of salicylic acid, especially at 50 ppm, significantly improved growth parameters and mitigated the detrimental effects of salinity. Notably, at the highest salinity level (3,000 mg kg–1), salicylic acid enhanced plant height by 11.1% and leaf number by 30.9% compared to untreated plants. Salicylic acid also boosted biochemical responses, such as increasing total phenolic and flavonoid content, which are critical for stress tolerance. This study underscores the potential of salicylic acid as a stress mitigator, promoting better growth and physiological resilience in peppermint under saline conditions, offering valuable insights for improving crop performance in salinity-affected regions.
ABDEL-AZIZ, S. M., AERON, A. & KAHIL, T. A., 2016. Health benefits and possible risks of herbal medicine. In: N. GARG, S. M. ABDEL-AZIZ & A. AERON (eds.), Microbes in food and health. Springer, Dordrecht. pp 97–116.
AHANGER, M. A. & AHMAD, P., 2019. Chapter 17 – Role of mineral nutrients in abiotic stress tolerance: Revisiting the associated signaling mechanisms. In: M. I. R. KHAN, P. S. REDDY, A. FERRANTE & N. A. KHAN (eds.), Plant Signaling Molecules. Woodhead Publishing, Chelmsford. pp. 269–285.
ALI, E., HUSSAIN, S., JALAL, F., KHAN, M. A., IMTIAZ, M., SAID, F., ISMAIL, M., KHAN, S., ALI, H. M., HATAMLEH, A. A., AL-DOSARY, M. A., MOSA, W. F. A. & SHAH, F., 2023. Salicylic acid-mitigates abiotic stress tolerance via altering defense mechanisms in Brassica napus L. Frontiers in plant science. 14. 1187260.
AMALI, A. A., MERSHA, A. N., NOFAL, E. R., MURRAY, K., NOROUZI, S., SABOORY, S., SALO, H., CHEVURU, S. R., SARAI TABRIZI, M., REDDY, P. K., ABDULLAHI, A. O., FARAHANI, H., KOLHE, P., DOWLATI FARD, R., SALIK, A. W., HUSSEIN, A. H., NAJAFI, H., POORMOGHADAM, M. & ADIAHA, M., 2021. Non-conventional sources of agricultural water management: Insights from young professionals in the irrigation and drainage sector. Irrigation and Drainage. 70. (3) 524–540.
BIDALIA, A., VIKRAM, K., YAMAL, G. & RAO, K. S., 2019. Effect of salinity on soil nutrients and plant health. In: M. S. AKHTAR (ed.), Salt Stress, Microbes, and Plant Interactions: Causes and Solution: Volume 1. Springer, Singapore. pp. 273–297.
CHOI, G.-H., RO, J.-H., PARK, B.-J., LEE, D.-Y., CHEONG, M.-S., LEE, D.-Y., SEO, W.-D. & KIM, J. H. (2016). Benzaldehyde as a new class plant growth regulator on Brassica campestris. Journal of Applied Biological Chemistry. 59. (2) 159–164.
COATSWORTH, P., GONZALEZ-MACIA, L., COLLINS, A. S. P., BOZKURT, T. & GÜDER, F., 2023. Continuous monitoring of chemical signals in plants under stress. Nature Reviews Chemistry. 7. (1) 7–25.
EL SABAGH, A., HOSSAIN, A., BARUTÇULAR, C., IQBAL, M. A., ISLAM, M. S., FAHAD, S., SYTAR, O., ÇIĞ, F., MEENA, R. S. & ERMAN, M., 2020. Consequences of salinity stress on the quality of crops and its mitigation strategies for sustainable crop production: An outlook of arid and semi-arid regions. In: S. FAHAD, M. HASANUZZAMAN, M. ALAM, H. ULLAH, M. SAEED, I. ALI KHAN & M. ADNAN (eds.), Environment, climate, plant and vegetation growth. Springer, Dordrecht. pp. 503–533.
EL SABAGH, A., ISLAM, M. S., SKALICKY, M., ALI RAZA, M., SINGH, K., ANWAR HOSSAIN, M., HOSSAIN, A., MAHBOOB, W., IQBAL, M. A., RATNASEKERA, D., SINGHAL, R. K., AHMED, S., KUMARI, A., WASAYA, A., SYTAR, O., BRESTIC, M., ÇIG, F., ERMAN, M., HABIB UR., RAHMAN, M., . . . ARSHAD, A., 2021. Salinity stress in wheat (Triticum aestivum L.) in the changing climate: Adaptation and management strategies [Review]. Frontiers in Agronomy. 3. 661932.
ERASLAN, F., INAL, A., GUNES, A. & ALPASLAN, M., 2007. Impact of exogenous salicylic acid on the growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Scientia Horticulturae. 113. (2) 120–128.
ERASLAN, F., INAL, A., PILBEAM, D. J. & GUNES, A., 2008. Interactive effects of salicylic acid and silicon on oxidative damage and antioxidant activity in spinach (Spinacia oleracea L. cv. Matador) grown under boron toxicity and salinity. Plant Growth Regulation. 55. (3) 207–219.
EREN, H., PEKMEZCI, M. Y., OKAY, S., TURKTAS, M., INAL, B., ILHAN, E., ATAK, M., ERAYMAN, M. & UNVER, T., 2015. Hexaploid wheat (Triticum aestivum) root miRNome analysis in response to salt stress. Annals of Applied Biology. 167. (2) 208–216.
GHASSEMI-GOLEZANI, K. & FARHANGI-ABRIZ, S., 2018. Foliar sprays of salicylic acid and jasmonic acid stimulate H+-ATPase activity of tonoplast, nutrient uptake and salt tolerance of soybean. Ecotoxicology and Environmental Safety. 166. 18–25.
GILL, S. S. & TUTEJA, N., 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry. 48. (12) 909–930.
GUPTA, S. & SETH, C. S., 2021. Salicylic acid alleviates chromium (VI) toxicity by restricting its uptake, improving photosynthesis and augmenting antioxidant defense in Solanum lycopersicum L. Physiology and Molecular Biology of Plants. 27. (11) 2651–2664.
HANIN, M., EBEL, C., NGOM, M., LAPLAZE, L. & MASMOUDI, K. (2016). New insights on plant salt tolerance mechanisms and their potential use for breeding [Review]. Frontiers in plant science. 7. 01787.
HASANUZZAMAN, M., NAHAR, K., FUJITA, M., AHMAD, P., CHANDNA, R., PRASAD, M. N. V. & OZTURK, M., 2013. Enhancing plant productivity under salt stress: Relevance of polyomics. In: P. AHMAD, M. M. AZOOZ & M. N. V. PRASAD (eds.), Salt stress in plants: signalling, omics and adaptations. Springer, New York. pp. 113–156.
HOCKING, B., TYERMAN, S. D., BURTON, R. A. & GILLIHAM, M., 2016. Fruit calcium: Transport and physiology [Review]. Frontiers in plant science. 7. 00569.
HOSSEINI, S. J., TAHMASEBI-SARVESTANI, Z., PIRDASHTI, H., MODARRES-SANAVY, S. A. M., MOKHTASSI-BIDGOLI, A., HAZRATI, S. & NICOLA, S., 2021. Investigation of yield, phytochemical composition, and photosynthetic pigments in different mint ecotypes under salinity stress. Food Science & Nutrition. 9. (5) 2620–2643.
HUSSAIN, M. I., FAROOQ, M., MUSCOLO, A. & REHMAN, A., 2020. Crop diversification and saline water irrigation as potential strategies to save freshwater resources and reclamation of marginal soils–a review. Environmental Science and Pollution Research. 27. (23) 28695–28729.
JANDA, T., GONDOR, O. K., YORDANOVA, R., SZALAI, G. & PÁL, M., 2014. Salicylic acid and photosynthesis: signalling and effects. Acta physiologiae plantarum. 36. (10) 2537–2546.
JOHNSON, J., COLLINS, T., WALSH, K. & NAIKER, M., 2020. Solvent extractions and spectrophotometric protocols for measuring the total anthocyanin, phenols and antioxidant content in plums. Chemical Papers. 74. (12) 4481–4492.
KEREPESI, I. & GALIBA, G., 2000. Osmotic and salt stress-induced alteration in soluble carbohydrate content in wheat seedlings. Crop science. 40. (2) 482–487.
KHALIL, H. A., EL-ANSARY, D. O. & AHMED, Z. F. R., 2022. Mitigation of salinity stress on pomegranate (Punica granatum L. Cv. Wonderful) plant using salicylic acid foliar spray. Horticulturae. 8. (5) 375.
KOEVOETS, I. T., VENEMA, J. H., ELZENGA, J. T. M. & TESTERINK, C., 2016. Roots withstanding their environment: Exploiting root system architecture responses to abiotic stress to improve crop tolerance [Review]. Frontiers in plant science, 7. 01335.
LAMUELA-RAVENTÓS, R. M., 2018. Folin–Ciocalteu method for the measurement of total phenolic content and antioxidant capacity. In: RESAT, A., ESRA, C., FEREIDOON, S. (eds.), Measurement of Antioxidant Activity & Capacity. Wiley, New York. pp. 107–115.
LI, X., CHANG, S. X. & SALIFU, K. F., 2014. Soil texture and layering effects on water and salt dynamics in the presence of a water table: a review. Environmental reviews. 22. (1) 41–50.
LINIĆ, I., MLINARIĆ, S., BRKLJAČIĆ, L., PAVLOVIĆ, I., SMOLKO, A. & SALOPEK-SONDI, B., 2021. Ferulic acid and salicylic acid foliar treatments reduce short-term salt stress in chinese cabbage by increasing phenolic compounds accumulation and photosynthetic performance. Plants. 10. (11) 2346.
MACHADO, R. M. A. & SERRALHEIRO, R. P., 2017. Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae. 3. (2) 30.
MAJEED, A. & MUHAMMAD, Z., 2019. Salinity: a major agricultural problem— causes, impacts on crop productivity and management strategies. In: M. HASANUZZAMAN, K. R. HAKEEM, K. NAHAR, H. F. ALHARBY (eds.), Plant abiotic stress tolerance: Agronomic, molecular and biotechnological approaches. Springer, Cham. pp. 83–99.
MANSOUR, M. M. F., 2023. Anthocyanins: Biotechnological targets for enhancing crop tolerance to salinity stress. Scientia Horticulturae. 319. 112182.
MCWILLIAM, J., 1986. The national and international importance of drought and salinity effects on agricultural production. Functional plant biology. 13. (1) 1–13.
MILLER, G., SUZUKI, N., CIFTCI-YILMAZ, S. & MITTLER, R., 2010. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant, cell & environment. 33. (4) 453–467.
MUNNS, R., 2002. Comparative physiology of salt and water stress. Plant, cell & environment. 25. (2) 239–250.
MUNNS, R., WALLACE, P. A., TEAKLE, N. L. & COLMER, T. D. (2010). Measuring soluble ion concentrations (Na+, K+, Cl−) in salt-treated plants. In: R. SUNKAR (ed.), Plant stress tolerance: Methods and protocols. Humana Press, New York. pp. 371–382.
PABBY, A. K. & SASTRE, A. M., 2013. State-of-the-art review on hollow fibre contactor technology and membrane-based extraction processes. Journal of membrane science. 430. 263–303.
PARASURAMAN, S., 2018. Herbal drug discovery: challenges and perspectives. Current Pharmacogenomics and Personalized Medicine (Formerly Current Pharmacogenomics). 16. (1) 63–68.
PĘKAL, A. & PYRZYNSKA, K., 2014. Evaluation of aluminium complexation reaction for flavonoid content assay. Food Analytical Methods. 7. (9) 1776–1782.
PER, T. S., FATMA, M., ASGHER, M., JAVIED, S. & KHAN, N. A., 2017. Salicylic acid and nutrients interplay in abiotic stress tolerance. In: R. NAZAR, N. IQBAL & N. A. KHAN (eds.), Salicylic acid: a multifaceted hormone. Springer, Singapore. pp. 221–237.
PETRIDIS, A., THERIOS, I., SAMOURIS, G. & TANANAKI, C., 2012. Salinity-induced changes in phenolic compounds in leaves and roots of four olive cultivars (Olea europaea L.) and their relationship to antioxidant activity. Environmental and Experimental Botany. 79. 37–43.
SHAKI, F., MABOUD, H. E. & NIKNAM, V., 2018. Growth enhancement and salt tolerance of Safflower (Carthamus tinctorius L.), by salicylic acid. Current Plant Biology. 13. 16–22.
SHARMA, A., KUMAR, V., SHAHZAD, B., RAMAKRISHNAN, M., SINGH SIDHU, G. P., BALI, A. S., HANDA, N., KAPOOR, D., YADAV, P., KHANNA, K., BAKSHI, P., REHMAN, A., KOHLI, S. K., KHAN, E. A., PARIHAR, R. D., YUAN, H., THUKRAL, A. K., BHARDWAJ, R. & ZHENG, B., 2020. Photosynthetic response of plants under different abiotic stresses: A review. Journal of Plant Growth Regulation, 39. (2) 509–531.
SHENAVAEI ZARE, M., ARMIN, M. & MARVI, H., 2021. Physiological responses of cotton to stress moderator application on different planting date under saline conditions. Iranian Journal of Science and Technology, Transactions A: Science. 45. (1) 11–25.
WANG, W., XU, J., FANG, H., LI, Z. & LI, M., 2020. Advances and challenges in medicinal plant breeding. Plant Science. 298. 110573.
WANI, A. B., CHADAR, H., WANI, A. H., SINGH, S. & UPADHYAY, N., 2017. Salicylic acid to decrease plant stress. Environmental Chemistry Letters. 15. (1) 101–123.
XIA, Q., TANG, H., FU, L., TAN, J., GOVINDJEE, G. & GUO, Y., 2023. Determination of Fv/Fm from Chlorophyll a fluorescence without dark adaptation by an LSSVM model. Plant Phenomics. 5. 0034.
YILDIRIM, E., TURAN, M. & GUVENC, I., 2008. Effect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. Journal of Plant Nutrition. 31. (3) 593–612.
YU, X., LIANG, C., CHEN, J., QI, X., LIU, Y. & LI, W., 2015. The effects of salinity stress on morphological characteristics, mineral nutrient accumulation and essential oil yield and composition in Mentha canadensis L. Scientia Horticulturae. 197. 579–583.
ZHAO, G., MA, B. & REN, C., 2007. Growth, gas exchange, chlorophyll fluorescence, and ion content of naked oat in response to salinity. Crop science. 47. 123–131.
ZHOU, Y., ZHAO, H., LI, C., HE, P., PENG, W., YUAN, L., ZENG, L. & HE, Y., 2012. Colorimetric detection of Mn2+ using silver nanoparticles cofunctionalized with 4-mercaptobenzoic acid and melamine as a probe. Talanta. 97. 331–335.
ZÖRB, C., GEILFUS, C.-M. & DIETZ, K-J., 2019. Salinity and crop yield. Plant biology. 21. (S1) 31–38.