Authors:
Digambar Aggayya Jakkan Indian Institute of Information Technology Nagpur (IIITN), Maharashtra, India

Search for other papers by Digambar Aggayya Jakkan in
Current site
Google Scholar
PubMed
Close
,
Pradnya Ghare Visvesvaraya National Institute of Technology (VNIT), Maharashtra, India

Search for other papers by Pradnya Ghare in
Current site
Google Scholar
PubMed
Close
,
Nirmal Kumar Division of Remote Sensing Application, ICAR-National Bureau of Soil Survey & Land Use Planning, Nagpur, India

Search for other papers by Nirmal Kumar in
Current site
Google Scholar
PubMed
Close
, and
Chandrashekhar Sakode Indian Institute of Information Technology Nagpur (IIITN), Maharashtra, India

Search for other papers by Chandrashekhar Sakode in
Current site
Google Scholar
PubMed
Close
Restricted access

Soil organic carbon (SOC) levels directly affect the production and health of crops. Making use of a database of the usefulness of using the 350–2,500 nm Near Infra Red (NIR) spectroscopy data range on 200 soil samples from the Indian state of Uttar Pradesh was evaluated in this study. The more sophisticated Artificial Neural Network, to choose the spectral components that were used to forecast SOC, Random Forest (RF) and Ensemble Lasso-Ridge Regression (ELRR) were utilized. In the preprocessing, the inversion derivative, logarithmic(log) derivative, and logarithmic base to 10(log10x) derivatives were employed to duplicate the spectrum wavelength. The main characteristic of spectrum wavelength for SOC were found to be within the range of 350 and 450 nm, per the results. The best accurate estimation of SOC content was obtained by combining the suggested DSANN or Dropout Sequential ANN technique with the Log10x pre-processed data. The R-squared (R2), RMSE, and RPIQ (Ratio of Performance in Inter Quartile Distance) values for the testing dataset were 0.83, 0.08, and 4.32, respectively.

  • BABU C. R., & RAO, D. S., 2017. Comparison of Discrete Wavelet Transform (DWT), Discrete Cosine Transform (DCT) and Stationary Wavelet Transform (SWT) based satellite image fusion techniques. International Journal of Current Research and Review. 9. (12) 4953.

    • Search Google Scholar
    • Export Citation
  • BELLON-MAUREL, V, FERNANDEZ-AHUMADA, E., PALAGOS, B., ROGER, J-M., & MCBRATNEY, A., 2010. Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy. TrAC Trends in Analytical Chemistry. 29. (9) 10731081.

    • Search Google Scholar
    • Export Citation
  • GUO, P. T, LI, M. F., LUO, W., TANG, Q. F., LIU, Z. W., & LIN, Z. M., 2015. Digital mapping of soil organic matter for rubber plantation at regional scale: An application of random forest plus residuals kriging approach. Geoderma. 237–238. 4959.

    • Search Google Scholar
    • Export Citation
  • HU, M.-H., YUAN, J.-H., YANG, X.-E. & HE, Z.-L., 2010. Effects of temperature on purification of eutrophic water by floating eco-island system. Acta Ecologica Sinica. 30. (6) 310318.

    • Search Google Scholar
    • Export Citation
  • KAYRANLI, B., SCHOLZ, M., MUSTAFA, A., & HEDMARK, Å., 2009. Carbon storage and fluxes within freshwater wetlands: a critical review. Wetlands. 30. (1) 111124.

    • Search Google Scholar
    • Export Citation
  • KINOSHITA, R, MOEBIUS-CLUNE, B. N., VAN ES, H. M., HIVELY, W. D., & BILGILIS, A. V., 2012. Strategies for soil quality assessment using visible and near-infrared reflectance spectroscopy in a Western Kenya chronosequence. Soil Science Society of America Journal. 76. (5) 17761788.

    • Search Google Scholar
    • Export Citation
  • KUANG, B., TEKIN, Y., & MOUAZEN, A. M., 2015. Comparison between artificial neural network and partial least squares for on-line visible and near infrared spectroscopy measurement of soil organic carbon, pH and clay content. Soil and Tillage Research. 146. 243252.

    • Search Google Scholar
    • Export Citation
  • LUAN, F. M., ZHANG, X. L., XIONG, H. G., ZHANG, F., & WANG, F., 2013. Comparative analysis of soil organic matter content based on different hyperspectral inversion models. [in Chinese] Guang pu xue yu guang pu fen xi. 33. (1) 196200.

    • Search Google Scholar
    • Export Citation
  • NAWAR, S., & MOUAZEN, A. M., 2017. Predictive performance of mobile vis-near infrared spectroscopy for key soil properties at different geographical scales by using spiking and data mining techniques. Catena. 151. 118129.

    • Search Google Scholar
    • Export Citation
  • SAVITZKY, A., & GOLAY, M. J. E., 1964. Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry. 36. (8) 16271639.

    • Search Google Scholar
    • Export Citation
  • SHI, T., CUI, L., WANG, J., FEI, T., CHEN, Y., & WU, G., 2013. Comparison of multivariate methods for estimating soil total nitrogen with visible/near-infrared spectroscopy. Plant and Soil. 366. (1–2) 363375.

    • Search Google Scholar
    • Export Citation
  • SHI, Z., WANG, Q., PENG, J., JI, W., LIU, H., LI, X., & VISCARRA ROSSEL, R. A., 2014. Development of a national VNIR soil-spectral library for soil classification and prediction of organic matter concentrations. Science China Earth Sciences. 57. 16711680.

    • Search Google Scholar
    • Export Citation
  • SHUNK, J., 2022. Neuron-specific dropout: a deterministic regularization technique to prevent neural networks from overfitting & reduce dependence on large training samples. http://arxiv.org/abs/2201.06938.

    • Search Google Scholar
    • Export Citation
  • SONG, J., GAO, J., ZHANG, Y., LI, F., MAN, W., LIU, M., WANG, J., LI, M., ZHENG, H., YANG, X., & LI, C., 2022. estimation of soil organic carbon content in coastal wetlands with measured VIS-NIR spectroscopy using optimized support vector machines and random forests. Remote Sensing. 14. (17) 4372.

    • Search Google Scholar
    • Export Citation
  • SUMMERS, D., LEWIS, M., OSTENDORF, B., & CHITTLEBOROUGH, D., 2011. Visible near-infrared reflectance spectroscopy as a predictive indicator of soil properties. Ecological Indicators. 11. (1) 123131.

    • Search Google Scholar
    • Export Citation
  • SVETNIK, V., LIAW, A., TONG, C., CULBERSON, J. C., SHERIDAN, R. P., & FEUSTON, B. P., 2003. Random forest: a classification and regression tool for compound classification and qsar modeling. Journal of Chemical Information and Computer Sciences. 43. (6) 19471958.

    • Search Google Scholar
    • Export Citation
  • VASQUES, G. M., GRUNWALD, S., & HARRIS, W. G., 2010. Spectroscopic models of soil organic carbon in Florida, USA. Journal of Environmental Quality. 39. (3) 923934.

    • Search Google Scholar
    • Export Citation
  • VISCARRA ROSSEL, R. A., WALVOORT, D. J. J., MCBRATNEY, A. B., JANIK, L. J., & SKJEMSTAD, J. O., 2006. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma. 131. (1–2) 5975.

    • Search Google Scholar
    • Export Citation
  • VOHLAND, M, J., BESOLD, J., HILL, J. & FRÜND, H. C., 2011. Comparing different multivariate calibration methods for the determination of soil organic carbon pools with visible to near infrared spectroscopy. Geoderma. 166. (1) 198205.

    • Search Google Scholar
    • Export Citation
  • WANG, Y., ZHANG, L., & HAIMITI, Y., 2015. Study on spatial variability of soil nutrients in Ebinur Lake wetlands in China. Journal of Coastal Research. 73. 5963.

    • Search Google Scholar
    • Export Citation
  • WANG, J, TIYIP, T, DING, J, ZHANG, D, LIU, W, WANG, F., & TASHPOLAT, N., 2017. Desert soil clay content estimation using reflectance spectroscopy preprocessed by fractional derivative. PLOS ONE. 12. (9) e0184836.

    • Search Google Scholar
    • Export Citation
  • WERE, K, BUI, D. T., DICK, Ø. B., & SINGH, B. R., 2015. A comparative assessment of support vector regression, artificial neural networks, and random forests for predicting and mapping soil organic carbon stocks across an Afromontane landscape. Ecological Indicators. 52. 394403.

    • Search Google Scholar
    • Export Citation
  • XIAOWEI, Z., XIAOBO, Z., JIEWEN, Z., JIYONG, S., XIAOLEI, Z., & HOLMES, M., 2014. Measurement of total anthocyanins content in flowering tea using near infrared spectroscopy combined with ant colony optimization models. Food Chemistry. 164. 536543.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Senior editors

Editor(s)-in-Chief: Szili-Kovács, Tibor

Technical Editor(s): Vass, Csaba

Section Editors

  • Filep, Tibor (Csillagászati és Földtudományi Központ, Földrajztudományi Intézet, Budapest) - soil chemistry, soil pollution
  • Makó, András (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil physics
  • Pásztor, László (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil mapping, spatial and spectral modelling
  • Ragályi, Péter (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - agrochemistry and plant nutrition
  • Rajkai, Kálmán (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil water flow modelling
  • Szili-Kovács Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest) - soil biology and biochemistry

Editorial Board

  • Bidló, András (Soproni Egyetem, Erdőmérnöki Kar, Környezet- és Földtudományi Intézet, Sopron)
  • Blaskó, Lajos (Debreceni Egyetem, Agrár Kutatóintézetek és Tangazdaság, Karcagi Kutatóintézet, Karcag)
  • Buzás, István (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)
  • Dobos, Endre (Miskolci Egyetem, Természetföldrajz-Környezettan Tanszék, Miskolc)
  • Fodor, Nándor (Agrártudományi Kutatóközpont, Mezőgazdasági Intézet, Martonvásár)
  • Győri, Zoltán (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Imréné Takács Tünde (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Jolánkai, Márton (Magyar Agrár- és Élettudományi Egyetem, Növénytermesztési-tudományok Intézet, Gödöllő)
  • Kátai, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Lehoczky, Éva (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Michéli, Erika (Magyar Agrár- és Élettudományi Egyetem, Környezettudományi Intézet, Gödöllő)
  • Rékási, Márk (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Schmidt, Rezső (Széchenyi István Egyetem, Mezőgazdaság- és Élelmiszertudományi Kar, Mosonmagyaróvár)
  • Tamás, János (Debreceni Egyetem, Mezőgazdaság-, Élelmiszertudományi és Környezetgazdálkodási Kar, Debrecen)
  • Tóth, Gergely (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Tibor (Agrártudományi Kutatóközpont, Talajtani Intézet, Budapest)
  • Tóth, Zoltán (Magyar Agrár- és Élettudományi Egyetem, Georgikon Campus, Keszthely)

International Editorial Board

  • Blum, Winfried E. H. (Institute for Soil Research, University of Natural Resources and Life Sciences (BOKU), Wien, Austria)
  • Hofman, Georges (Department of Soil Management, Ghent University, Gent, Belgium)
  • Horn, Rainer (Institute of Plant Nutrition and Soil Science, Christian Albrechts University, Kiel, Germany)
  • Inubushi, Kazuyuki (Graduate School of Horticulture, Chiba University, Japan)
  • Kätterer, Thomas (Swedish University of Agricultural Sciences (SLU), Sweden)
  • Lichner, Ljubomir (Institute of Hydrology, Slovak Academy of Sciences, Bratislava, Slovak Republic)
  • Nemes, Attila (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Pachepsky, Yakov (Environmental Microbial and Food Safety Lab USDA, Beltsville, MD, USA)
  • Simota, Catalin Cristian (The Academy of Agricultural and Forestry Sciences, Bucharest, Romania)
  • Stolte, Jannes (Norwegian Institute of Bioeconomy Research, Ås, Norway)
  • Wendroth, Ole (Department of Plant and Soil Sciences, College of Agriculture, Food and Environment, University of Kentucky, USA)

Szili-Kovács, Tibor
ATK Talajtani Intézet
Herman Ottó út 15., H-1022 Budapest, Hungary
Phone: (+36 1) 212 2265
Fax: (+36 1) 485 5217
E-mail: editorial.agrokemia@atk.hu

Indexing and Abstracting Services:

  • CAB Abstracts
  • CABELLS Journalytics
  • CABI
  • EMBiology
  • Global Health
  • SCOPUS

2023  
Scopus  
CiteScore 0.4
CiteScore rank Q4 (Agronomy and Crop Science)
SNIP 0.105
Scimago  
SJR index 0.151
SJR Q rank Q4

Agrokémia és Talajtan
Publication Model Hybrid
Online only
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 172 EUR / 198 USD (Online only)
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Agrokémia és Talajtan
Language Hungarian, English
Size B5
Year of
Foundation
1951
Volumes
per Year
1
Issues
per Year
2
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0002-1873 (Print)
ISSN 1588-2713 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Sep 2024 0 0 0
Oct 2024 0 0 0
Nov 2024 0 0 0
Dec 2024 0 0 0
Jan 2025 219 7 8
Feb 2025 16572 4 0
Mar 2025 0 0 0