Author: B. Slezák 1
View More View Less
  • 1 Please ask the editor of the journal.
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • FRANKOWSKA, H., Some inverse mapping theorems, Ann. Inst. H. Poincaré. Anal. Non-Linéaire 7 (1990), 183-234. MR 91j:49020

    'Some inverse mapping theorems ' () 7 Ann. Inst. H. Poincaré. Anal. Non-Linéaire : 183 -234.

    • Search Google Scholar
  • IOFFE, A. D., On the local surjection property, Nonlinear Anal 11 (1987), 565-592. MR 88h:90239

    'On the local surjection property ' () 11 Nonlinear Anal. : 565 -592.

  • KHANH, P. Q., An induction theorem and general open mapping theorems, J. Math. Anal. Appl 118 (1986), 519-534. MR 87m:46014

    'An induction theorem and general open mapping theorems ' () 118 J. Math. Anal. Appl. : 519 -534.

    • Search Google Scholar
  • MORDUKHOVICH, B., Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions, Trans. Amer. Math. Soc 340 (1993), 1-35. MR 94a:49011

    'Complete characterization of openness, metric regularity, and Lipschitzian properties of multifunctions ' () 340 Trans. Amer. Math. Soc. : 1 -35.

    • Search Google Scholar
  • PÁLES, Zs., Inverse and implicit function theorems for nonsmooth maps in Banach spaces (to appear).

  • PENOT, J.-P., On regularity conditions in mathematical programming, Math. Programming Stud 19 (1982), 167-199. MR 84d:90095

    'On regularity conditions in mathematical programming ' () 19 Math. Programming Stud. : 167 -199.

    • Search Google Scholar
  • CHOU, C. C. and PENOT, J.-P., Infinite products of relations, set-valued series and uniform openness of multifunctions, Set-Valued Anal 3 (1995), 11-21. MR 96b:54028

    'Infinite products of relations, set-valued series and uniform openness of multifunctions ' () 3 Set-Valued Anal. : 11 -21.

    • Search Google Scholar
  • AZE, D., CHOU, C. C. and PENOT, J.-P., Substraction theorems and approximate openness for multifunctions: topological and infinitesimal viewpoints, J. Math. Anal. Appl 221 (1998), 33-58. CMP 98#11

    'Substraction theorems and approximate openness for multifunctions: topological and infinitesimal viewpoints ' () 221 J. Math. Anal. Appl : 33 -58.

    • Search Google Scholar
  • PTÁK, V., A quantitative refinement of the closed graph theorem, Czechoslovak Math. J 24 (99) (1974), 503-506. MR 50 #929

    'A quantitative refinement of the closed graph theorem ' () 24 Czechoslovak Math. J : 503 -506.

    • Search Google Scholar
  • PTÁK, V., A nonlinear substraction theorem, Proc. Roy. Irish Acad. Sect A 82 (1982), 47-53. MR 83m:54021

    'A nonlinear substraction theorem ' () 82 Proc. Roy. Irish Acad. Sect. A : 47 -53.

  • RADULESCU, M. and RADULESCU, S., Local inversion theorems without assuming continuous differentiability, J. Math. Anal. Appl 138 (1989), 581-590. MR 90e:58007

    'Local inversion theorems without assuming continuous differentiability ' () 138 J. Math. Anal. Appl. : 581 -590.

    • Search Google Scholar
  • SZILÁGYI, T., Generalization of the implicit function theorem and of Banach's open mapping theorem, Acta Sci. Math. (Szeged) 39 (1977), 391-396. MR 58 #18527

    'Generalization of the implicit function theorem and of Banach's open mapping theorem ' () 39 Acta Sci. Math. (Szeged) : 391 -396.

    • Search Google Scholar
  • SZILÁGYI, T., Existence and Lipschitzian dependence theorems in complete spaces, Ann. Univ. Sci. Budapest Eötvös Sect. Math 32 (1989), 191-202. MR 92m:49008

    'Existence and Lipschitzian dependence theorems in complete spaces ' () 32 Ann. Univ. Sci. Budapest. Eötvös Sect. Math. : 191 -202.

    • Search Google Scholar
  • PENOT, J.-P., Metric regularity, openness and Lipschitzian behaviour of multifunctions, Nonlinear Anal 13 (1989), 629-643. MR 90h:54024

    'Metric regularity, openness and Lipschitzian behaviour of multifunctions ' () 13 Nonlinear Anal. : 629 -643.

    • Search Google Scholar
  • SZILÁGYI, T., Inverse function theorem - without assuming continuous differentiability, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 20 (1977), 107-110. MR 57 #14018

    'Inverse function theorem - without assuming continuous differentiability ' () 20 Ann. Univ. Sci. Budapest. Eötvös Sect. Math. : 107 -110.

    • Search Google Scholar
  • HESTENES, M. R., Calculus of variations and optimal control theory, John Wiley & Sons, New York-London-Sydney, 1966. MR 34 #3390

    Calculus of variations and optimal control theory , ().

  • DMITRUK, A. V., MILJUTIN, A. A. and OSMOLOVSKIJ, N. P., Ljusternik's theorem and the theory of the extremum, Uspekhi Mat. Nauk 35 (1980), No. 6, 11-46 (in Russian). MR 82c:58010

    'Ljusternik's theorem and the theory of the extremum ' () 35 Uspekhi Mat. Nauk : 11 -46.

  • GARAY, B. M., On an inverse function theorem of Halkin, Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 28 (1985), 129-131. MR 87m:58017

    'On an inverse function theorem of Halkin ' () 28 Ann. Univ. Sci. Budapest. Eötvös Sect. Math. : 129 -131.

    • Search Google Scholar
  • WOOD, G. R. and BARIT, W., Differentiable retracts and a modified inverse function theorem, Bull Austral. Math. Soc. 18 (1978), 37-43. MR 57 #17692

    'Differentiable retracts and a modified inverse function theorem ' () 18 Bull Austral. Math. Soc. : 37 -43.

    • Search Google Scholar
  • AUBIN, J.-P. and EKELAND, I., Applied nonlinear analysis, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1984. MR 87a:58002

    Applied nonlinear analysis , ().

  • DANEŚ, J., A covering theorem for mappings between metric spaces, General topology and its relations to modern analysis and algebra, V (Prague, 1981), Sigma Ser. Pure Math., 3, ed. by J. Novack, Helderman Verlag, Berlin, 1983, 122-126. MR 84f:47071

    A covering theorem for mappings between metric spaces , () 122 -126.

  • FRANKOWSKA, H., An open mapping principle for set-valued maps, J. Math. Anal. Appl. 127 (1987), 172-180. MR 88i:49011

    'An open mapping principle for set-valued maps ' () 127 J. Math. Anal. Appl. : 172 -180.

  • FRANKOWSKA, H., High order inverse function theorems, Analyse nonlinéaire (Perpignan, 1987), Ann. Inst. H. Poincaré. Anal. Non-Linéaire 6 (1989), suppl., 283-303. MR 90k:58015; Gauthier-Villars, Paris, 1989. MR 90h:00016

    High order inverse function theorems, Analyse nonlinéaire (Perpignan, 1987) , () 283 -303.

    • Search Google Scholar
  • HALKIN, H., Implicit functions and optimization problems without continuous differentiability of the data, SIAM J. Control 12 (1974), 229-236. MR 53 #10311

    'Implicit functions and optimization problems without continuous differentiability of the data ' () 12 SIAM J. Control : 229 -236.

    • Search Google Scholar
  • CLARKE, F. H., On the inverse function theorem, Pacific J. Math. 64 (1976), 97-102. MR 54 #13005

    'On the inverse function theorem ' () 64 Pacific J. Math. : 97 -102.

  • CLARKE, F., Optimization and nonsmooth analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1983. MR 85m:49002

    Optimization and nonsmooth analysis , ().

  • AUBIN, J.-P. and FRANKOWSKA, H., Set-valued analysis, Systems & Control: Foundations & Applications, 2, Birkhäuser, Boston, 1990. MR 91d:49001

    Set-valued analysis , ().

  • AUBIN, J.-P. and FRANKOWSKA, H., On inverse function theorems for set-valued maps, J. Math. Pures Appl. (9) 66 (1987), 71-89. MR 88e:49029

    'On inverse function theorems for set-valued maps ' () 66 J. Math. Pures Appl. : 71 -89.

  • BORWEIN, J. M. and ZHUANG, D. M., Verifiable necessary and sufficient conditions for openness and regularity of set-valued and single-valued maps, J. Math. Anal. Appl. 134 (1988), 441-459. MR 90h:90185

    'Verifiable necessary and sufficient conditions for openness and regularity of set-valued and single-valued maps ' () 134 J. Math. Anal. Appl. : 441 -459.

    • Search Google Scholar
  • PENOT, J.-P., Local surjectivity and inverse function theorems for mappings and multimappings, Proc. Symposium, Hanoi, 1993 (to appear).

    , , .

    • Search Google Scholar