View More View Less
  • 1 Hungarian Academy of Sciences Alfréd Rényi Institute of Mathematics HU–1364 Budapest
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • MAJOR, P., Almost sure functional limit theorems, Part I. The general case, Studia Sci. Math. Hungar. 34 (1998), 273-304.

    'Almost sure functional limit theorems, Part I. The general case ' () 34 Studia Sci. Math. Hungar. : 273 -304.

    • Search Google Scholar
  • ATLAGH, M., Théorème central limite presque sûr et loi du logarithme itéré pour des sommes de variables aléatoires indépendantes, C. R. Acad. Sci. Paris Sér. I Math. 316 (1993), 929-933. MR 94c:60052

    'Théorème central limite presque sûr et loi du logarithme itéré pour des sommes de variables aléatoires indépendantes ' () 316 C. R. Acad. Sci. Paris Sér. I Math. : 929 -933.

    • Search Google Scholar
  • BERKES, I., On the almost sure central limit theorem and domains of attraction, Probab. Theory Related Fields 102 (1995), 1-17. MR 96j:60033

    'On the almost sure central limit theorem and domains of attraction ' () 102 Probab. Theory Related Fields : 1 -17.

    • Search Google Scholar
  • BERKES, I. and CSÁKI, E., On the pointwise central limit theorem and mixtures of stable distributions, Statist. Probab. Lett. 29 (1996), 361-368. MR 97g:60026

    'On the pointwise central limit theorem and mixtures of stable distributions ' () 29 Statist. Probab. Lett. : 361 -368.

    • Search Google Scholar
  • BERKES, I. and DEHLING, H., Some limit theorems in log density, Ann. Probab. 21 (1993), 1640-1670. MR 94h:60026

    'Some limit theorems in log density ' () 21 Ann. Probab. : 1640 -1670.

  • BERKES, I. and DEHLING, H., On the almost sure central limit theorem for random variables with infinite variance, J. Theoret. Probab. 7 (1994), 667-680. MR 95g:60041

    'On the almost sure central limit theorem for random variables with infinite variance ' () 7 J. Theoret. Probab. : 667 -680.

    • Search Google Scholar
  • BINGHAM, N. H. and ROGERS, L. C. G., Summability methods and almost-sure convergence, Almost everywhere convergence, II (Evanston, IL, 1989), ed. by A. Bellow and R. Jones, Academic Press, Boston, MA, 1991, 69-83. MR 93b:60062

    Summability methods and almost-sure convergence , () 69 -83.

  • BREIMAN, L., Probability, Addison-Wesley Publishing Company, Reading, Mass. -Menlo Park, Calif. - London - Don Mills, Ont., 1968. MR 37 #4841

    Probability , ().

  • CSAKI, E. and FÖLDES, A., On two ergodic properties of self-similar processes, Asymptotic methods in probability and statistics, Elsevier, 1998, 97-111.

    'On two ergodic properties of self-similar processes ' () Asymptotic methods in probability and statistics, Elsevier : 97 -111.

    • Search Google Scholar
  • DOBRUSHIN, R. L., Gaussian and their subordinated self-similar random generalized fields, Ann. Probab. 7 (1979), 1-28. MR 80e:60069

    'Gaussian and their subordinated self-similar random generalized fields ' () 7 Ann. Probab. : 1 -28.

    • Search Google Scholar
  • DOBRUSHIN, R. L. and MAJOR, P., Non-central limit theorems for non-linear functionals of Gaussian fields, Z. Wahrsch. Verw. Gebiete 50 (1979), 27-52. MR 81i:60019

    'Non-central limit theorems for non-linear functionals of Gaussian fields ' () 50 Z. Wahrsch. Verw. Gebiete : 27 -52.

    • Search Google Scholar
  • BERKES. I., Results and problems related to the pointwise central limit theorem, Asymptotic methods in probability and statistics, Elsevier, 1998, 59-96.

    'Results and problems related to the pointwise central limit theorem ' () Asymptotic methods in probability and statistics : 59 -96.

    • Search Google Scholar
  • TAQQU, M. S., Convergence of integrated processes of arbitrary Hermite rank, Z. Wahrsch. Verw. Gebiete 50 (1979), 53-83. MR 81i:60020

    'Convergence of integrated processes of arbitrary Hermite rank ' () 50 Z. Wahrsch. Verw. Gebiete : 53 -83.

    • Search Google Scholar
  • DUDLEY, R. M., A course on empirical processes, École d'été de probabilités de Saint Flour, XII-1982, ed. by P. L. Hennequin, Lecture Notes in Mathematics, 1097, Springer-Verlag, Berlin - New York, 1984, 1-142. MR 87i:60006

    A course on empirical processes, École d'été de probabilités de Saint Flour, XII-1982 , () 1 -142.

    • Search Google Scholar
  • FELLER, W., An introduction to probability theory and its applications, Vol. II, 2nd edition, John Wiley & Sons, Inc., New-York - London - Sidney - Toronto, 1971. MR 42 #5292

    An introduction to probability theory and its applications, Vol. II , ().

  • HORVÁTH, L. and KHOSHNEVISAN, D., A strong approximation for logarithmic averages, Studia Sci. Math. Hungar. 31 (1996), 187-196. MR 97b:60051

    'A strong approximation for logarithmic averages ' () 31 Studia Sci. Math. Hungar. : 187 -196.

    • Search Google Scholar
  • IBRAGIMOV, I. A. and LIFSHITS, M. A., O predel'nykh teoremakh tipa "pochti navernoe" [On "almost sure" type limit theorems], Teoriya Veroyatnostei (to appear) (in Russian).

  • IBRAGIMOV, I. A. and LIFSHITS, M. A., On the convergence of generalized moments in the almost sure central limit theorem (to appear).

  • LAMPERTI, J. W., Semi-stable stochastic processes, Trans. Amer. Math. Soc. 104 (1962), 62-78. MR 25 #1575

    'Semi-stable stochastic processes ' () 104 Trans. Amer. Math. Soc. : 62 -78.