View More View Less
  • 1 Please ask the editor of the journal.
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • GAPOSKIN, V. F., The law of the iterated logarithm for Abel's and Cesàro's methods of summation, Teor. Verojatnost. i Primenen. 10 (1965), 449-459 (in Russian). MR 33 #3336

    'The law of the iterated logarithm for Abel's and Cesàro's methods of summation ' () 10 Teor. Verojatnost. i Primenen. : 449 -459.

    • Search Google Scholar
  • GRIFFIN, P. S., The influence of extremes on the law of the iterated logarithm, Probab. Theory Related Fields 77 (1988), 241-270. MR 89i:60067

    The influence of extremes on the law of the iterated logarithm 77 241 270

  • HARTMAN, P. and WINTNER, A., On the law of the iterated logarithm, Amer. J. Math. 63 (1941), 169-176. Zbl 24.158; MR 2, 228

    'On the law of the iterated logarithm ' () 63 Amer. J. Math. : 169 -176.

  • KHINTCHINE, A., Über einen Satz der Wahrscheinlichkeitsrechnung, Fund. Math. 6 (1924), 9-20.

    'Über einen Satz der Wahrscheinlichkeitsrechnung ' () 6 Fund. Math. : 9 -20.

  • SHEPP, L. A., A limit law concerning moving averages, Ann. Math. Stat. 35 (1964), 424-428. MR 29 #4091

    'A limit law concerning moving averages ' () 35 Ann. Math. Stat. : 424 -428.

  • STADTMÜLLER, U., A note on the law of the iterated logarithm for weighted sums of random variables, Ann. Probab. 12 (1984), 35-44. MR 85d:60064

    'A note on the law of the iterated logarithm for weighted sums of random variables ' () 12 Ann. Probab. : 35 -44.

    • Search Google Scholar
  • BINGHAM, N. H. and GOLDIE, C. M., Riesz means and self-neglecting functions, Math. Z. 199 (1988), 443-454. MR 89i:60065

    'Riesz means and self-neglecting functions ' () 199 Math. Z. : 443 -454.

  • BINGHAM, N. H. and TENENBAUM, G., Riesz and Valiron means and fractional moments, Math. Proc. Cambridge Philos. Soc. 99 (1986), 143-149. MR 86m:40010

    'Riesz and Valiron means and fractional moments ' () 99 Math. Proc. Cambridge Philos. Soc. : 143 -149.

    • Search Google Scholar
  • CHOW, Y. S., Delayed sums and Borel summability of independent, identically distributed random variables, Bull. Inst. Math. Acad. Sinica 1 (1973), 207-220. MR 49 #8099

    Delayed sums and Borel summability of independent, identically distributed random variables 1 207 220

  • CSÖRGÖ, M. and RÉVÉSZ, P., Strong approximations in probability and statistics, Probability and Mathematical Statistics, Academic Press, New York-London, 1981. MR 84d:60050

  • CSÖRGÖ, M. and STEINEBACH, J., Improved Erdös-Rényi and strong approximation laws for increments of partial sums, Ann. Probab. 9 (1981), 988-996. MR 82k:60063

    'Improved Erdös-Rényi and strong approximation laws for increments of partial sums ' () 9 Ann. Probab. : 988 -996.

    • Search Google Scholar
  • DEHEUVELS, P. and DEVROYE, L., Limit laws of Erdös-Rényi-Shepp type, Ann. Probab. 15 (1987), 1363-1386. MR 88f:60055

    'Limit laws of Erdös-Rényi-Shepp type ' () 15 Ann. Probab. : 1363 -1386.

  • ERDÖS, P. and RÉNYI, A., On a new law of large numbers, J. Analyse. Math. 23 (1970), 103-111. MR 42 #6907

    'On a new law of large numbers ' () 23 J. Analyse. Math. : 103 -111.

  • GANTERT, N., Large deviations for a heavy tailed mixing sequence, 1996 (Preprint).

  • LANZINGER, H., An almost sure limit theorem for moving averages of random variables between the strong law of large numbers and Erdös-Rényi law, ESAIM Probab. & Statist. 2 (1998), 163-183.

    'An almost sure limit theorem for moving averages of random variables between the strong law of large numbers and Erdös-Rényi law ' () 2 ESAIM Probab. & Statist. : 163 -183.

    • Search Google Scholar
  • LANZINGER, H., A Baum-Katz theorem for moving averages of random variables under exponential moment conditions, Statist. Probab. Letters 39 (1998), 8995.

    'A Baum-Katz theorem for moving averages of random variables under exponential moment conditions ' () 39 Statist. Probab. Letters : 8995.

    • Search Google Scholar
  • NAGAEV, S. V., Large deviations of sums of independent random variables, Ann. Probab. 7 (1979), 745-789. MR 80i:60032

    'Large deviations of sums of independent random variables ' () 7 Ann. Probab. : 745 -789.

  • PETROV, V. V., Limit theorems of probability theory, Oxford Studies in Probability, 4, Oxford Univ. Press, New York, 1995. MR 96h:60048

    Limit theorems of probability theory , ().

  • ACOSTA, A. DE and KUELBS, J., Limit theorems for moving averages of independent random vectors, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 64 (1983), 67-123. MR 84i:60011

    Limit theorems for moving averages of independent random vectors 64 67 123

  • KIESEL, R., The law of the iterated logarithm for certain power series and generalized Nörlund methods, Math. Proc. Cambridge Philos. Soc. 120 (1996), 735-753. MR 97j:60056

    'The law of the iterated logarithm for certain power series and generalized Nörlund methods ' () 120 Math. Proc. Cambridge Philos. Soc. : 735 -753.

    • Search Google Scholar
  • KOLMOGOROFF, A. N., Über das Gesetz des iterierten Logarithmus, Math. Ann. 101 (1929), 126-135. Jb. Fortschritte Math. 55, 298

    'Über das Gesetz des iterierten Logarithmus ' () 101 Math. Ann. : 126 -135.

  • LAI, T. L., Summability methods for independent identically distributed random variables, Proc. Amer. Math. Soc. 45 (1974), 253-261. MR 50 #8665

    'Summability methods for independent identically distributed random variables ' () 45 Proc. Amer. Math. Soc. : 253 -261.

    • Search Google Scholar
  • BINGHAM, N. H., Variants on the law of the iterated logarithm, Bull. London Math. Soc. 18 (1986), 433-467. MR 87k:60087

    'Variants on the law of the iterated logarithm ' () 18 Bull. London Math. Soc. : 433 -467.

    • Search Google Scholar
  • STRASSEN, V., A converse to the law of the iterated logarithm, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 4 (1966), 265-268. MR 34 #850

    A converse to the law of the iterated logarithm 4 265 268

  • STRASSEN, V., An invariance principle for the law of the iterated logarithm, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 3 (1964), 211-226. MR 30 #5379

    An invariance principle for the law of the iterated logarithm 3 211 226