Author: E. Péter 1
View More View Less
  • 1 Please ask the editor of the journal.
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

We prove ha any tigh sequence of random variables con ains a subsequence which satis .es,after any permu a ion of its erms,a large class of limit heorems valid for i.i.d.random variables.This extends a basic heorem of Aldous on subsequence behaviour.

  • S. CHATTERJI D. Un principe de sous-suites dans la théorie des probabilités, Séminaire de Probabilités, VI (Univ. Strasbourg, année universitaire 1970-71; Journées Probabilistes de Strasbourg, 1971), Lecture Notes in Math., 258, Springer-Verlag, Berlin, 1972, 72-89. MR 52 #15609

    Un principe de sous-suites dans la théorie des probabilités, Séminaire de Probabilités, VI , ().

    • Search Google Scholar
  • CHATTERJI, S. D., A principle of subsequences in probability theory: The central limit theorem, Adv. Math.13 (1974), 31-54; correction, ibid. 14 (1974), 266-269. MR49 #6312

    'A principle of subsequences in probability theory: The central limit theorem ' () 13 Adv. Math. : 31 -54.

    • Search Google Scholar
  • Chatterji S. D., A subsequence principle in probability theory. II. The law of the iterated logarithm, Invent. Math. 25 (1974), 241-251. MR 50 #11403

    'A subsequence principle in probability theory. II. The law of the iterated logarithm, Invent. ' () 25 Math. : 241 -251.

    • Search Google Scholar
  • GAPOSKIN, V. F., Lacunary series and independent functions, Uspehi Mat. Nauk21 (1966), no. 6 (132), 3-82 (in Russian). MR34 #6374

    'Lacunary series and independent functions ' () 21 Uspehi Mat. Nauk .

  • GAPOSKIN, V. F., Sequences of functions and the central limit theorem, Mat. Sb. (N.S.)70(112) (1966), 145-171 (in Russian). MR34 #5138

    'Sequences of functions and the central limit theorem ' () 70 Mat. Sb. (N.S.) : 145 -171.

  • GAPOSKIN, V. F., Convergence and limit theorems for subsequences of random variables, Teor. Verojatnost. i Primenen.17 (1972), 401-423 (in Russian). MR46 #10046

    'Convergence and limit theorems for subsequences of random variables ' () 17 Teor. Verojatnost. i Primenen. : 401 -423.

    • Search Google Scholar
  • KOMLÓS, J., A generalization of a problem of Steinhaus, Acta Math. Acad. Sci. Hungar.18 (1967), 217-229. MR35 #1071

    'A generalization of a problem of Steinhaus ' () 18 Acta Math. Acad. Sci. Hungar. : 217 -229.

    • Search Google Scholar
  • KOMLÓS, J., Every sequence converging to 0 weakly in L2 contains an unconditional convergence sequence, Ark. Mat.12 (1974), 41-49. MR49 #11137

    'Every sequence converging to 0 weakly in L2 contains an unconditional convergence sequence ' () 12 Ark. Mat. : 41 -49.

    • Search Google Scholar
  • BERKES, I. and ROSENTHAL, H., Almost exchangeable sequences of random variables, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete70 (1985), 473-507. MR87g:60037

    'Almost exchangeable sequences of random variables ' () 70 Z. Wahrscheinlichkeitstheorie und Verw. Gebiete : 473 -507.

    • Search Google Scholar
  • CHATTERJI, S. D., A general strong law, Invent. Math.9 (1970), 235-245. MR42 #1183

    'A general strong law ' () 9 Invent. Math. : 235 -245.

  • ALDOUS, D. J., Limit theorems for subsequences of arbitrarily dependent sequences of random variables, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete40 (1977), 59-82. MR56 #13330

    'Limit theorems for subsequences of arbitrarily dependent sequences of random variables ' () 40 Z. Wahrscheinlichkeitstheorie und Verw. Gebiete : 59 -82.

    • Search Google Scholar
  • BERKES, I., An extension of the Komlós subsequence theorem, Acta Math. Hungar.55 (1990), 103-110. MR92e:60059

    'An extension of the Komlós subsequence theorem ' () 55 Acta Math. Hungar. : 103 -110.

  • BERKES, I. and PÉTER, E., Exchangeable random variables and the subsequence principle, Probab. Theory Related Fields73 (1986), 395-413. MR87m:60083

    'Exchangeable random variables and the subsequence principle ' () 73 Probab. Theory Related Fields : 395 -413.

    • Search Google Scholar