View More View Less
  • 1 Please ask the editor of the journal.
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

For discrete martingales we show that empirical measures related to the central limit theorem when appropriately weighted converge weakly toward a Gaussian measure,for almost all trajectories.Thi result enables u to derive a weighted trong law of the large number for which we pecify both weak and trong rate of convergence.

  • STRASSEN, V., Almost sure behavior of sums of independent random variables and martingales, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 1, Univ. California Press, Berkeley, Calif., 1967, 315-343. MR35 #4969

    Almost sure behavior of sums of independent random variables and martingales , () 315 -343.

    • Search Google Scholar
  • TOUATI, A., Théorèmes limites pour des processus de Markov récurrents, C. R. Acad. Sci. Paris Ser. I Math.305 (1987), 841-844. MR88m:60174

    'Théorèmes limites pour des processus de Markov récurrents ' () 305 C. R. Acad. Sci. Paris Ser. I Math. : 841 -844.

    • Search Google Scholar
  • TOUATI, A., Sur les versions fortes du théorème de la limite centrale, Prépublication de l'Université de Marne-La-Vallée, n° 23, 1995.

  • WEI, C. Z., Asymptotic properties of least-squares estimates in stochastic regression models, Ann. Statist.13 (1985), 1498-1508. MR87a:62092

    'Asymptotic properties of least-squares estimates in stochastic regression models ' () 13 Ann. Statist. : 1498 -1508.

    • Search Google Scholar
  • M. ATLAGH, M. WEBER. Un théorème central limite presque-sûr relatif à des sous-suites, C. R. Acad. Sci. Paris Ser. I Math. 315 (1992), 203-206. MR 93g:60060

    'Un théorème central limite presque-sûr relatif à des sous-suites ' () 315 C. R. Acad. Sci. Paris Ser. I Math. : 203 -206.

    • Search Google Scholar
  • BERKES, I. and DEHLING, H., Some limit theorems in log density, Ann. Probab.21 (1993), 1640-1670. MR94h:60026

    'Some limit theorems in log density ' () 21 Ann. Probab. : 1640 -1670.

  • BERKES, I., On the almost sure central limit theorem and domains of attraction, Probab. Theory Related Fields102 (1995), 1-17. MR96j:60033

    'On the almost sure central limit theorem and domains of attraction ' () 102 Probab. Theory Related Fields : 1 -17.

    • Search Google Scholar
  • BHATTACHARYA, R. N., On the functional central limit theorem and the law of the iterated logarithm for Markov processes, Z. Wahrsch. Verw. Gebiete60 (1982), 185-201. MR83h:60072

    'On the functional central limit theorem and the law of the iterated logarithm for Markov processes ' () 60 Z. Wahrsch. Verw. Gebiete : 185 -201.

    • Search Google Scholar
  • BROSAMLER, G. A., An almost everywhere central limit theorem, Math. Proc. Cambridge Philos. Soc.104 (1988), 561-574. MR89i:60045

    'An almost everywhere central limit theorem ' () 104 Math. Proc. Cambridge Philos. Soc. : 561 -574.

    • Search Google Scholar
  • CADRE, B., Études de convergence en loi de fonctionnelles de processus, Thèse de doctorat de l'Université de Rennes I, Rennes, 1995.

    'Études de convergence en loi de fonctionnelles de processus ' () Thèse de doctorat de l'Université de Rennes I, Rennes .

    • Search Google Scholar
  • CHAÂBANE, F., Version forte du théorème de la limite centrale fonctionnel pour les martingales, C. R. Acad. Sci. Paris Ser. I Math.323 (1996), 195-198. MR97d:60057

    'Version forte du théorème de la limite centrale fonctionnel pour les martingales ' () 323 C. R. Acad. Sci. Paris Ser. I Math. : 195 -198.

    • Search Google Scholar
  • CHAÂKBANE, F., MAAOUIA, F. and TOUATI, A., Généralisation du théorème de la limite centrale presque-sûr pour les martingales vectorielles, C. R. Acad. Sci. Paris Ser. I Math.326 (1998), 229-232. MR99i:60061

    'MAAOUIA, F. and TOUATI, A., Généralisation du théorème de la limite centrale presque-sûr pour les martingales vectorielles ' () 326 C. R. Acad. Sci. Paris Ser. I Math. : 229 -232.

    • Search Google Scholar
  • CHEBCHOUB, A. and MANOUBI, R., Sur le théorème de la limite centrale presque-sûre pour les processus ponctuels, C. R. Acad. Sci. Paris Ser. I Math.325 (1997), 83-86. MR98f:60055

    'Sur le théorème de la limite centrale presque-sûre pour les processus ponctuels ' () 325 C. R. Acad. Sci. Paris Ser. I Math. : 83 -86.

    • Search Google Scholar
  • CSÖRGÖ, M. and HORVÁTH, L., Invariance principles for logarithmic averages, Math. Proc. Cambridge Philos. Soc.112 (1992), 195-205. MR93e:60057

    'Invariance principles for logarithmic averages ' () 112 Math. Proc. Cambridge Philos. Soc. : 195 -205.

    • Search Google Scholar
  • J. D. DEUSCHEL, D. W. TROOCK, Large deviations, Pure and Applied Mathematics, 137, Academic Press, Inc., Boston, MA, 1989. MR 90h:60026

    Large deviations , ().

  • DUFLO, M., Random iterative models, Applications of Mathematics, 34, Springer-Verlag, Berlin, 1997. MR98m:62239

    Random iterative models , ().

  • FISHER, A., Convex-invariant means and a pathwise central limit theorem, Adv. In Math.63 (1987), 213-246. MR88g:60058

    'Convex-invariant means and a pathwise central limit theorem ' () 63 Adv. In Math. : 213 -246.

    • Search Google Scholar
  • HALL, P. and HEYDE, C. C., Martingale limit theory and its applications, Probability and Mathematical Statistics, Academic Press, New York - London, 1980. MR83a:60001

    Martingale limit theory and its applications , ().

  • IBRAGIMOV, I. A. and LIFSHITS, M. A., On the almost sure limit theorems, Theoret. Probab. Appl.44 (1999), 328-350.

    'On the almost sure limit theorems ' () 44 Theoret. Probab. Appl. : 328 -350.

  • LACEY, M. T. and PHILIPP, W., A note on the almost sure central limit theorem, Statist. Probab. Lett.9 (1990), 201-205. MR91e:60100

    'A note on the almost sure central limit theorem ' () 9 Statist. Probab. Lett. : 201 -205.

    • Search Google Scholar
  • LIFSHITS, M. A., Almost sure central limit theorem for martingales (preprint).

  • MAÂOUIA, F., Versions fortes du théorème de la limite centrale pour les processus de Markov, C. R. Acad. Sci. Paris Ser. I Math.323 (1996), 293-296. MR97c:60182

    'Versions fortes du théorème de la limite centrale pour les processus de Markov ' () 323 C. R. Acad. Sci. Paris Ser. I Math. : 293 -296.

    • Search Google Scholar
  • MAÂOUIA F. Principes d'invariance par moyennisation logarithmique pour les processus de Markov, Ann. Probab. (to appear).

    'Principes d'invariance par moyennisation logarithmique pour les processus de Markov ' () Ann. Probab. .

    • Search Google Scholar
  • MARCUS, M. B. and ROSEN, J., Logarithmic averages for the local times of recurrent random walks and Levy processes, Stochastic Process. Appl.59 (1995), 175-184. MR96j:60129

    'Logarithmic averages for the local times of recurrent random walks and Levy processes ' () 59 Stochastic Process. Appl. : 175 -184.

    • Search Google Scholar
  • PELLETIER, M., Efficacité asymptotique presque sûre des algorithmes stochastiques moyennisés, C. R. Acad. Sci. Paris Ser. I Math.323 (1996), 813-816. MR97g:62154

    'Efficacité asymptotique presque sûre des algorithmes stochastiques moyennisés ' () 323 C. R. Acad. Sci. Paris Ser. I Math. : 813 -816.

    • Search Google Scholar
  • RODZIK, B. and RYCHLIK, Z., An almost sure central limit theorem for independent random variables, Ann. Inst. H. Poincaré Probab. Statist.30 (1994), 1-11. MR95c:60029

    'An almost sure central limit theorem for independent random variables ' () 30 Ann. Inst. H. Poincaré Probab. Statist. : 1 -11.

    • Search Google Scholar
  • SCHATTE, P., On strong versions of the central limit theorem, Math. Nachr.137 (1988), 249-256. MR89i:60070

    'On strong versions of the central limit theorem ' () 137 Math. Nachr. : 249 -256.

  • SCOTT, D. J. and HUGGINS, R. M., On the embedding of processes in Brownian motion and the law of the iterated logarithm for reverse martingale, Bull. Austral. Math. Soc.27 (1983), 443-459. MR85a:60048

    'On the embedding of processes in Brownian motion and the law of the iterated logarithm for reverse martingale ' () 27 Bull. Austral. Math. Soc. : 443 -459.

    • Search Google Scholar

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
sumbission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)