View More View Less
  • 1 Please ask the editor of the journal.
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

For discrete martingales we show that empirical measures related to the central limit theorem when appropriately weighted converge weakly toward a Gaussian measure,for almost all trajectories.Thi result enables u to derive a weighted trong law of the large number for which we pecify both weak and trong rate of convergence.

  • STRASSEN, V., Almost sure behavior of sums of independent random variables and martingales, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66), Vol. II: Contributions to Probability Theory, Part 1, Univ. California Press, Berkeley, Calif., 1967, 315-343. MR 35 #4969

    Almost sure behavior of sums of independent random variables and martingales , () 315 -343.

    • Search Google Scholar
  • TOUATI, A., Théorèmes limites pour des processus de Markov récurrents, C. R. Acad. Sci. Paris Ser. I Math. 305 (1987), 841-844. MR 88m:60174

    'Théorèmes limites pour des processus de Markov récurrents ' () 305 C. R. Acad. Sci. Paris Ser. I Math. : 841 -844.

    • Search Google Scholar
  • TOUATI, A., Sur les versions fortes du théorème de la limite centrale, Prépublication de l'Université de Marne-La-Vallée, n° 23, 1995.

  • WEI, C. Z., Asymptotic properties of least-squares estimates in stochastic regression models, Ann. Statist. 13 (1985), 1498-1508. MR 87a:62092

    'Asymptotic properties of least-squares estimates in stochastic regression models ' () 13 Ann. Statist. : 1498 -1508.

    • Search Google Scholar
  • M. ATLAGH, M. WEBER. Un théorème central limite presque-sûr relatif à des sous-suites, C. R. Acad. Sci. Paris Ser. I Math. 315 (1992), 203-206. MR 93g:60060

    'Un théorème central limite presque-sûr relatif à des sous-suites ' () 315 C. R. Acad. Sci. Paris Ser. I Math. : 203 -206.

    • Search Google Scholar
  • BERKES, I. and DEHLING, H., Some limit theorems in log density, Ann. Probab. 21 (1993), 1640-1670. MR 94h:60026

    'Some limit theorems in log density ' () 21 Ann. Probab. : 1640 -1670.

  • BERKES, I., On the almost sure central limit theorem and domains of attraction, Probab. Theory Related Fields 102 (1995), 1-17. MR 96j:60033

    'On the almost sure central limit theorem and domains of attraction ' () 102 Probab. Theory Related Fields : 1 -17.

    • Search Google Scholar
  • BHATTACHARYA, R. N., On the functional central limit theorem and the law of the iterated logarithm for Markov processes, Z. Wahrsch. Verw. Gebiete 60 (1982), 185-201. MR 83h:60072

    'On the functional central limit theorem and the law of the iterated logarithm for Markov processes ' () 60 Z. Wahrsch. Verw. Gebiete : 185 -201.

    • Search Google Scholar
  • BROSAMLER, G. A., An almost everywhere central limit theorem, Math. Proc. Cambridge Philos. Soc. 104 (1988), 561-574. MR 89i:60045

    'An almost everywhere central limit theorem ' () 104 Math. Proc. Cambridge Philos. Soc. : 561 -574.

    • Search Google Scholar
  • CADRE, B., Études de convergence en loi de fonctionnelles de processus, Thèse de doctorat de l'Université de Rennes I, Rennes, 1995.

    'Études de convergence en loi de fonctionnelles de processus ' () Thèse de doctorat de l'Université de Rennes I, Rennes .

    • Search Google Scholar
  • CHAÂBANE, F., Version forte du théorème de la limite centrale fonctionnel pour les martingales, C. R. Acad. Sci. Paris Ser. I Math. 323 (1996), 195-198. MR 97d:60057

    'Version forte du théorème de la limite centrale fonctionnel pour les martingales ' () 323 C. R. Acad. Sci. Paris Ser. I Math. : 195 -198.

    • Search Google Scholar
  • CHAÂKBANE, F., MAAOUIA, F. and TOUATI, A., Généralisation du théorème de la limite centrale presque-sûr pour les martingales vectorielles, C. R. Acad. Sci. Paris Ser. I Math. 326 (1998), 229-232. MR 99i:60061

    'MAAOUIA, F. and TOUATI, A., Généralisation du théorème de la limite centrale presque-sûr pour les martingales vectorielles ' () 326 C. R. Acad. Sci. Paris Ser. I Math. : 229 -232.

    • Search Google Scholar
  • CHEBCHOUB, A. and MANOUBI, R., Sur le théorème de la limite centrale presque-sûre pour les processus ponctuels, C. R. Acad. Sci. Paris Ser. I Math. 325 (1997), 83-86. MR 98f:60055

    'Sur le théorème de la limite centrale presque-sûre pour les processus ponctuels ' () 325 C. R. Acad. Sci. Paris Ser. I Math. : 83 -86.

    • Search Google Scholar
  • CSÖRGÖ, M. and HORVÁTH, L., Invariance principles for logarithmic averages, Math. Proc. Cambridge Philos. Soc. 112 (1992), 195-205. MR 93e:60057

    'Invariance principles for logarithmic averages ' () 112 Math. Proc. Cambridge Philos. Soc. : 195 -205.

    • Search Google Scholar
  • J. D. DEUSCHEL, D. W. TROOCK, Large deviations, Pure and Applied Mathematics, 137, Academic Press, Inc., Boston, MA, 1989. MR 90h:60026

    Large deviations , ().

  • DUFLO, M., Random iterative models, Applications of Mathematics, 34, Springer-Verlag, Berlin, 1997. MR 98m:62239

    Random iterative models , ().

  • FISHER, A., Convex-invariant means and a pathwise central limit theorem, Adv. In Math. 63 (1987), 213-246. MR 88g:60058

    'Convex-invariant means and a pathwise central limit theorem ' () 63 Adv. In Math. : 213 -246.

    • Search Google Scholar
  • HALL, P. and HEYDE, C. C., Martingale limit theory and its applications, Probability and Mathematical Statistics, Academic Press, New York - London, 1980. MR 83a:60001

    Martingale limit theory and its applications , ().

  • IBRAGIMOV, I. A. and LIFSHITS, M. A., On the almost sure limit theorems, Theoret. Probab. Appl. 44 (1999), 328-350.

    'On the almost sure limit theorems ' () 44 Theoret. Probab. Appl. : 328 -350.

  • LACEY, M. T. and PHILIPP, W., A note on the almost sure central limit theorem, Statist. Probab. Lett. 9 (1990), 201-205. MR 91e:60100

    'A note on the almost sure central limit theorem ' () 9 Statist. Probab. Lett. : 201 -205.

    • Search Google Scholar
  • LIFSHITS, M. A., Almost sure central limit theorem for martingales (preprint).

  • MAÂOUIA, F., Versions fortes du théorème de la limite centrale pour les processus de Markov, C. R. Acad. Sci. Paris Ser. I Math. 323 (1996), 293-296. MR 97c:60182

    'Versions fortes du théorème de la limite centrale pour les processus de Markov ' () 323 C. R. Acad. Sci. Paris Ser. I Math. : 293 -296.

    • Search Google Scholar
  • MAÂOUIA F. Principes d'invariance par moyennisation logarithmique pour les processus de Markov, Ann. Probab. (to appear).

    'Principes d'invariance par moyennisation logarithmique pour les processus de Markov ' () Ann. Probab. .

    • Search Google Scholar
  • MARCUS, M. B. and ROSEN, J., Logarithmic averages for the local times of recurrent random walks and Levy processes, Stochastic Process. Appl. 59 (1995), 175-184. MR 96j:60129

    'Logarithmic averages for the local times of recurrent random walks and Levy processes ' () 59 Stochastic Process. Appl. : 175 -184.

    • Search Google Scholar
  • PELLETIER, M., Efficacité asymptotique presque sûre des algorithmes stochastiques moyennisés, C. R. Acad. Sci. Paris Ser. I Math. 323 (1996), 813-816. MR 97g:62154

    'Efficacité asymptotique presque sûre des algorithmes stochastiques moyennisés ' () 323 C. R. Acad. Sci. Paris Ser. I Math. : 813 -816.

    • Search Google Scholar
  • RODZIK, B. and RYCHLIK, Z., An almost sure central limit theorem for independent random variables, Ann. Inst. H. Poincaré Probab. Statist. 30 (1994), 1-11. MR 95c:60029

    'An almost sure central limit theorem for independent random variables ' () 30 Ann. Inst. H. Poincaré Probab. Statist. : 1 -11.

    • Search Google Scholar
  • SCHATTE, P., On strong versions of the central limit theorem, Math. Nachr. 137 (1988), 249-256. MR 89i:60070

    'On strong versions of the central limit theorem ' () 137 Math. Nachr. : 249 -256.

  • SCOTT, D. J. and HUGGINS, R. M., On the embedding of processes in Brownian motion and the law of the iterated logarithm for reverse martingale, Bull. Austral. Math. Soc. 27 (1983), 443-459. MR 85a:60048

    'On the embedding of processes in Brownian motion and the law of the iterated logarithm for reverse martingale ' () 27 Bull. Austral. Math. Soc. : 443 -459.

    • Search Google Scholar