View More View Less
  • 1 Hungarian Academy of Sciences Alfréd Rényi Institute of Mathematics HU–1364 Budapest
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

In a recent paper the authors have proved that a convex body K R d, d = 2, containing the origin O in its interior, is symmetric with respect to O if and only if V d - 1 (K \ H0) = V d - 1 (K \ H) for all hyperplanes H;H0 such that H and H0 are parallel and H0 3 O (V d - 1 is (d - 1){measure). For the proof the authors have employed a new type of integro-differential transform that lets to correspond to a suficiently nice function f on S d - 1 the function R (1) f, where(R (1) f)(.)= R S d - 1 \ . ? (f=)d {with. 2 S d - 1 as pole and as geographic latitude {and have determined the null-space of the operator R (1) . In this paper we extend the definition to any integer m = 1, defining (R (m) f)(.) analogously as for m=1, but using  m f= m rather than f= . (Thecasem=0 is the spherical Radon transformation (Funk transformation).) We investigate the null-space of the operator R (m) : up to a summand of finite dimension, it consists of the even (odd) functions in the domain of the operator, for m odd (even). For the proof we use spherical harmonics.

  • FALCONER, K. J., Applications of a result on spherical integration to the theory of convex sets, Amer. Math. Monthly 90 (1983), 690-693. MR 85f:52012

    'Applications of a result on spherical integration to the theory of convex sets ' () 90 Amer. Math. Monthly : 690 -693.

    • Search Google Scholar
  • FUNK, P., Über Flächen mit lauter geschlossenen geodätischen Linien, Math. Ann. 74 (1913), 278-300. JFM 44.0692.03

    'Über Flächen mit lauter geschlossenen geodätischen Linien ' () 74 Math. Ann. : 278 -300.

    • Search Google Scholar
  • GARDNER, R. J., Geometric tomography, Encyclopedia of Mathematics and its Applications, 58, Cambridge University Press, Cambridge, 1995. MR 96j:52006

    Geometric tomography , ().

  • GROEMER, H., Fourier series and spherical harmonics in convexity, Handbook of convex geometry, ed. by P. M. Gruber and J. M. Wills, North-Holland, Amsterdam, 1993, 1259-1295. MR 94j:52001

    Fourier series and spherical harmonics in convexity , () 1259 -1295.

  • GROEMER, H., Geometric applications of Fourier series and spherical harmonics, Encyclopedia of Mathematics and its Applications, 61, Cambridge University Press, Cambridge, 1996. MR 97j:52001

    Geometric applications of Fourier series and spherical harmonics , ().

  • HAMMER, P. C., Diameters of convex bodies, Proc. Amer. Math. Soc. 5 (1954), 304-306. MR 15, 819b

    'Diameters of convex bodies ' () 5 Proc. Amer. Math. Soc. : 304 -306..

  • HELGASON, S., The Radon transform, Progress in Mathematics, 5, Birkhäuser, Boston, Mass., 1980. MR 83f:43012

    The Radon transform , ().

  • HELGASON, S., Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions, Pure and Applied Mathematics, 113, Academic Press, Inc., Orlando, Fla., 1984. MR 86c:22017

    Groups and geometric analysis. Integral geometry, invariant differential operators, and spherical functions , ().

    • Search Google Scholar
  • LIFŠIC, I. M. and POGORELOV, A. V., On the determination of Fermi surfaces and electron velocities in metals by the oscillation of magnetic susceptibility, Dokl. Akad. Nauk SSSR 96 (1954), 1143-1145 (in Russian). Zbl 057.44804

    'On the determination of Fermi surfaces and electron velocities in metals by the oscillation of magnetic susceptibility ' () 96 Dokl. Akad. Nauk SSSR : 1143 -1145.

    • Search Google Scholar
  • BLASCHKE, W., Kreis und Kugel, 2. durchgesehene und verbesserte Auflage, Walter de Gruyter & Co., Berlin, 1956. MR 17, 1123d

    Kreis und Kugel , ().

  • TRICOMI, F. G., Vorlesungen über Orthogonalreihen, Die Grundlehren der mathematischen Wissenschaften, Bd. 76, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1955. MR 17, 30a

    Vorlesungen über Orthogonalreihen , ().

  • TRICOMI, F. G., Integral equations, Pure and Applied Mathematics, Vol. 5, Inter-science Publishers, New York-London, 1957. MR 20 #1177

    Integral equations , ().

  • WHITNEY, H., Geometric integration theory, Princeton University Press, Princeton, N.J., 1957. MR 19, 309c

    Geometric integration theory , ().

  • SANSONE, G., Orthogonal functions, Revised English edition, Pure and Applied Mathematics, Vol. IX, Interscience Publishers, London-New York, 1959. MR 21 #2140

    Orthogonal functions , ().

  • SCHNEIDER, R., Functions on a sphere with vanishing integrals over certain subspheres, J. Math. Anal. Appl. 26 (1969), 381-384. MR 38 #6004

    'Functions on a sphere with vanishing integrals over certain subspheres ' () 26 J. Math. Anal. Appl. : 381 -384.

    • Search Google Scholar
  • SCHNEIDER, R., Über eine Integralgleichung in der Theorie der konvexen Körper, Math. Nachr. 44 (1970), 55-75. MR 43 #1043

    'Über eine Integralgleichung in der Theorie der konvexen Körper ' () 44 Math. Nachr. : 55 -75.

    • Search Google Scholar
  • SCHNEIDER, R., Convex bodies: the Brunn-Minkowski theory, Encyclopedia of Mathematics and its Applications, 44, Cambridge University Press, Cambridge, 1993. MR 94d:52007

    Convex bodies: the Brunn-Minkowski theory , ().

  • SEELEY, R. T., Spherical harmonics, Amer. Math. Monthly 73 (1966), 115-121. MR 34 #1577

    'Spherical harmonics ' () 73 Amer. Math. Monthly : 115 -121.

  • MAKAI, E. JR., MARTINI, H. and ÓDOR, T., Maximal sections and centrally symmetric bodies, Mathematika (to appear).

    'Maximal sections and centrally symmetric bodies ' () Mathematika (to appear). .

  • MINKOWSKI, H., Über die Körper konstanter Breite, Mat. Sb. 25 (1905), 505-508 (in Russian); Ges. Abh. 2, 277-279. JFM 36.0526.01

    'Über die Körper konstanter Breite ' () 25 Mat. Sb. : 505 -508.

  • MÜLLER, C., Spherical harmonics, Lecture Notes in Math., 17, Springer-Verlag, Berlin-New York, 1966. MR 33# 7593

    Spherical harmonics , ().

  • RADON, J., Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten, Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math. Nat. Kl. 69 (1917), 262-277. JFM 46.0436.02

    'Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten ' () 69 Ber. Verh. Sächs. Akad. Wiss. Leipzig, Math. Nat. Kl. : 262 -277.

    • Search Google Scholar
  • ADAMS, R. A., Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press, Inc., New York-London, 1975. MR 56 #9247

    Sobolev spaces, Pure and Applied Mathematics , ().

  • ALEXANDROFF, A., Zur Theorie der gemischten Volumina von konvexen Körpern. II. Neue Ungleichungen zwischen den gemischten Volumina und ihre Anwendungen, Mat. Sb. 2 (1937), 1205-1238 (Russian with German summary). Zbl 018.27601

    'Zur Theorie der gemischten Volumina von konvexen Körpern. II.Neue Ungleichungen zwischen den gemischten Volumina und ihre Anwendungen ' () 2 Mat. Sb. : 1205 -1238.

    • Search Google Scholar
  • PETTY, C. M., Centroid surfaces, Pacific J. Math. 11 (1961), 1535-1547. MR 24 #A3558

    'Centroid surfaces ' () 11 Pacific J. Math. : 1535.

  • ZIEMER, W. P., Weakly differentiable functions. Sobolev spaces and functions of bounded variation, Graduate Texts in Mathematics, 120, Springer-Verlag, New York, 1989. MR 91e:46046

    Weakly differentiable functions. Sobolev spaces and functions of bounded variation , ().

    • Search Google Scholar
  • BONNESEN, T. and FENCHEL, W., Theorie der konvexen Körper, Ergebnisse der Mathematik und ihrer Grenzgebiete, Bd. 3, Heft 1, Springer, Berlin, 1934. Zbl 008.07708

    Theorie der konvexen Körper , ().

  • ERDÉLYI, A., MAGNUS, W., OBERHETTINGER, F. and TRICOMI, F. G., Higher transcendental functions II., McGraw-Hill Book Company, New York-Toronto-London, 1953. MR 15, 419i

    Higher transcendental functions II. , ().