We prove central limit theorems and related asymptotic results for where W is a Wiener process and Sk are partial sums of i.i.d. random variables with mean 0 and variance 1. The integrability and smoothness conditions made on f are optimal in a number of important cases.
BERKES, I. and HORVÁTH, L., almost sure invariance principles for logarithmic averages, Studia Sci. Math. Hungar. 33 (1997), 1-24. MR 98f:60054
'Almost sure invariance principles for logarithmic averages ' () 33 Studia Sci. Math. Hungar. : 1 -24.
BROSAMLER, G. A., An almost everywhere central limit theorem, Math. Proc. Cambridge Philos. Soc. 104 (1988), 561-574. MR 89i:60045
'An almost everywhere central limit theorem ' () 104 Math. Proc. Cambridge Philos. Soc. : 561 -574.
CHEN, X., On the limit laws of the second order for additive functionals of Harris recurrent Markov chains, Probab. Theory Related Fields 116 (2000), 89-123.
() 116 Probab. Theory Related Fields : 89 -123.
CHEN, X., Chung's law for additive functionals of positive recurrent Markov chains, Statist. Probab. Lett. 47 (2000), 253-264.
'Chung's law for additive functionals of positive recurrent Markov chains ' () 47 Statist. Probab. Lett. : 253 -264.
CSÖRGÖ, M. and HORVÁTH, L., Invariance principles for logarithmic averages, Math. Proc. Cambridge Philos. Soc. 112 (1992), 195-205. MR 93e:60057
'Invariance principles for logarithmic averages ' () 112 Math. Proc. Cambridge Philos. Soc. : 195 -205.
EINMAHL, U., Strong invariance principles for partial sums of independent random vectors, Ann. Probab. 15 (1987), 1419-1440. MR 88h:60071
'Strong invariance principles for partial sums of independent random vectors ' () 15 Ann. Probab. : 1419 -1440.
HORVÁTH, L. and KHOSHNEVISAN, D., Weight functions and pathwise local central limit theorems, Stochastic Process. Appl. 59 (1995), 105-123. MR 96g:60090
'Weight functions and pathwise local central limit theorems ' () 59 Stochastic Process. Appl. : 105 -123.
HORVÁTH, L. and KHOSHNEVISAN, D., A strong approximation for logarithmic averages, Studia Sci. Math. Hungar. 31 (1996), 187-196. MR 97b:60051
'A strong approximation for logarithmic averages ' () 31 Studia Sci. Math. Hungar. : 187 -196.
IBRAGIMOV, I. and LIFSHITS, M., On the convergence of generalized moments in almost sure central limit theorem, Statist. Probab. Lett. 40 (1998), 343-351. MR 99m:60032
'On the convergence of generalized moments in almost sure central limit theorem ' () 40 Statist. Probab. Lett. : 343 -351.
KOMLÓS, J., MAJOR, P. and TUSNÁDY, G., An approximation of partial sums of independent R.V.'s and the sample DF. I, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 32 (1975), 111-131. MR 51 #11605b
'An approximation of partial sums of independent R.V.'s and the sample DF. I ' () 32 Z. Wahrscheinlichkeitstheorie und Verw. Gebiete : 111 -131.
LACEY, M. and PHILIPP, W., A note on the almost sure central limit theorem, Statist. Probab. Lett. 9 (1990), 201-205. MR 91e:60100
'A note on the almost sure central limit theorem ' () 9 Statist. Probab. Lett. : 201 -205.
SCHATTE, P., On strong versions of the central limit theorem, Math. Nachr. 137 (1988), 249-256. MR 89i:60070
'On strong versions of the central limit theorem ' () 137 Math. Nachr. : 249 -256.
SCHATTE, P., On the central limit theorem with almost sure convergence, Probab. Math. Statist. 11 (1990), 237-246. MR 92k:60050
'On the central limit theorem with almost sure convergence ' () 11 Probab. Math. Statist. : 237 -246.
WEIGL, A., Zwei Sätze über die Belegungszeit beim Random Walk, Diplomarbeit, TU Wien, Wien, 1989.
Zwei Sätze über die Belegungszeit beim Random Walk, Diplomarbeit , ().
BERKES, I., CSÁKI, E. and HORVÁTH, L., almost sure central limit theorems under minimal conditions, Statist. Probab. Lett. 37 (1998), 67-76. MR 99b:60042
'CSÁKI, E. and HORVÁTH, L., almost sure central limit theorems under minimal conditions ' () 37 Statist. Probab. Lett. : 67 -76.