View More View Less
  • 1 Please ask the editor of the journal.
  • | 2 Department of Plant Protection, Szent István University Gödöllő, Hungary
  • | 3 Laboratory of Populations, Rockefeller University and Columbia University, Please ask the editor of the journal.
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

We prove central limit theorems and related asymptotic results for where W is a Wiener process and Sk are partial sums of i.i.d. random variables with mean 0 and variance 1. The integrability and smoothness conditions made on f are optimal in a number of important cases.

  • BERKES, I. and HORVÁTH, L., almost sure invariance principles for logarithmic averages, Studia Sci. Math. Hungar.33 (1997), 1-24. MR98f:60054

    'Almost sure invariance principles for logarithmic averages ' () 33 Studia Sci. Math. Hungar. : 1 -24.

    • Search Google Scholar
  • BROSAMLER, G. A., An almost everywhere central limit theorem, Math. Proc. Cambridge Philos. Soc.104 (1988), 561-574. MR89i:60045

    'An almost everywhere central limit theorem ' () 104 Math. Proc. Cambridge Philos. Soc. : 561 -574.

    • Search Google Scholar
  • CHEN, X., On the limit laws of the second order for additive functionals of Harris recurrent Markov chains, Probab. Theory Related Fields116 (2000), 89-123.

    () 116 Probab. Theory Related Fields : 89 -123.

  • CHEN, X., Chung's law for additive functionals of positive recurrent Markov chains, Statist. Probab. Lett.47 (2000), 253-264.

    'Chung's law for additive functionals of positive recurrent Markov chains ' () 47 Statist. Probab. Lett. : 253 -264.

    • Search Google Scholar
  • CSÖRGÖ, M. and HORVÁTH, L., Invariance principles for logarithmic averages, Math. Proc. Cambridge Philos. Soc.112 (1992), 195-205. MR93e:60057

    'Invariance principles for logarithmic averages ' () 112 Math. Proc. Cambridge Philos. Soc. : 195 -205.

    • Search Google Scholar
  • EINMAHL, U., Strong invariance principles for partial sums of independent random vectors, Ann. Probab.15 (1987), 1419-1440. MR88h:60071

    'Strong invariance principles for partial sums of independent random vectors ' () 15 Ann. Probab. : 1419 -1440.

    • Search Google Scholar
  • HORVÁTH, L. and KHOSHNEVISAN, D., Weight functions and pathwise local central limit theorems, Stochastic Process. Appl.59 (1995), 105-123. MR96g:60090

    'Weight functions and pathwise local central limit theorems ' () 59 Stochastic Process. Appl. : 105 -123.

    • Search Google Scholar
  • HORVÁTH, L. and KHOSHNEVISAN, D., A strong approximation for logarithmic averages, Studia Sci. Math. Hungar.31 (1996), 187-196. MR97b:60051

    'A strong approximation for logarithmic averages ' () 31 Studia Sci. Math. Hungar. : 187 -196.

    • Search Google Scholar
  • IBRAGIMOV, I. and LIFSHITS, M., On the convergence of generalized moments in almost sure central limit theorem, Statist. Probab. Lett.40 (1998), 343-351. MR99m:60032

    'On the convergence of generalized moments in almost sure central limit theorem ' () 40 Statist. Probab. Lett. : 343 -351.

    • Search Google Scholar
  • KOMLÓS, J., MAJOR, P. and TUSNÁDY, G., An approximation of partial sums of independent R.V.'s and the sample DF. I, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete32 (1975), 111-131. MR51 #11605b

    'An approximation of partial sums of independent R.V.'s and the sample DF. I ' () 32 Z. Wahrscheinlichkeitstheorie und Verw. Gebiete : 111 -131.

    • Search Google Scholar
  • LACEY, M. and PHILIPP, W., A note on the almost sure central limit theorem, Statist. Probab. Lett.9 (1990), 201-205. MR91e:60100

    'A note on the almost sure central limit theorem ' () 9 Statist. Probab. Lett. : 201 -205.

    • Search Google Scholar
  • SCHATTE, P., On strong versions of the central limit theorem, Math. Nachr.137 (1988), 249-256. MR89i:60070

    'On strong versions of the central limit theorem ' () 137 Math. Nachr. : 249 -256.

  • SCHATTE, P., On the central limit theorem with almost sure convergence, Probab. Math. Statist.11 (1990), 237-246. MR92k:60050

    'On the central limit theorem with almost sure convergence ' () 11 Probab. Math. Statist. : 237 -246.

    • Search Google Scholar
  • WEIGL, A., Zwei Sätze über die Belegungszeit beim Random Walk, Diplomarbeit, TU Wien, Wien, 1989.

    Zwei Sätze über die Belegungszeit beim Random Walk, Diplomarbeit , ().

  • BERKES, I., CSÁKI, E. and HORVÁTH, L., almost sure central limit theorems under minimal conditions, Statist. Probab. Lett.37 (1998), 67-76. MR99b:60042

    'CSÁKI, E. and HORVÁTH, L., almost sure central limit theorems under minimal conditions ' () 37 Statist. Probab. Lett. : 67 -76.

    • Search Google Scholar

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)