Author: T. Móri 1
View More View Less
  • 1 Eötvös Loránd Tudományegyetem, Valószínűségelméleti és Statisztika Tanszék Pázmány Péter sétány 1/c H-1117 Budapest, Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Cross Mark

In a one-parameter model for evolution of random trees strong law of large numbers and central limit theorem are proved for the number of vertices with low degree. The proof is based on elementary martingale theory.

  • Bollobæs, B., Riordan, O., Spencer, J. and Tusnædy, G., The degree sequence of a scale-free random graph process, Random Structures Algorithms18 (2001), 279-290. MR2002b:05121

    'The degree sequence of a scale-free random graph process ' () 18 Random Structures Algorithms : 279 -290.

    • Search Google Scholar
  • Graham, R. L., Knuth, D. E. and Patashnik, O., Concrete mathematics. A foundation for computer science, Addison-Wesley Publishing Company, Reading, MA, 1994. MR97d:68003

    Concrete mathematics. A foundation for computer science , ().

  • Shiryaev, A. N., Probability, 2nd ed., Graduate Texts in Mathematics, 95, Springer-Verlag, New York, 1996. MR97c:60003

    Probability , ().

  • Barabæsi, A.-L. and Albert, R., Emergence of scaling in random networks, Science286 (1999), 509-512.

    'Emergence of scaling in random networks ' () 286 Science : 509 -512.