View More View Less
  • 1 Faculty of Mathematical Sciences and Computer Engineering, Teacher Training University Theran, 15614, Iran
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

There are concepts which are related to or can be formulated by homological techniques, such as derivations, multipliers and lifting problems. Moreover, a Banach algebra A is said to be amenable if H1(A,X*)=0 for every A-dual module X*. Another concept related to the theory is the concept of amenability in the sense of Johnson. A topological group G is said to be amenable if there is an invariant mean on L 8(G). Johnson has shown that a topological group is amenable if and only if the group algebra L1(G) is amenable. The aim of this research is to define the cohomology on a hypergroup algebra L(K) and extend the results of L1(G) over to L(K). At first stage it is viewed that Johnson's theorem is not valid so more. If A is a Banach algebra and h is a multiplicative linear functional on A, then (A,h) is called left amenable if for any Banach two-sided A-module X with ax=h(a)x(a? A, x? X),H1(A,X*)=0. We prove that (L(K),h) is left amenable if and only if K is left amenable. Where, the latter means that there is a left invariant mean m on C(K), i. e., m(lf)=m(f)x, where lxf(µ)=f(dx*µ). In this case we briefly say that L(K) is left amenable. Johnson also showed that L1(G) is amenable if and only if the augmentation ideal I={f? L1(G)|∫Gf=0}0 has abounded right approximate identity. We extend this result to hypergroups.

  • GHAHRAMANI, F. and MEDGHALCHI, A. R., Compact multipliers on weighted hyper-group algebras, Math. Proc. Cambridge Philos. Soc. 98 (1985), 493-500. MR 87i:43004

    'Compact multipliers on weighted hyper-group algebras ' () 98 Math. Proc. Cambridge Philos. Soc. : 493 -500.

    • Search Google Scholar
  • GEBUHRER, M.-O., Remarks on amenability of discrete hypergroups, Harmonic analysis and discrete potential theory (Frascati, 1991), Plenum Press, New York, 1992, 131-143. MR 94g:43006

    Remarks on amenability of discrete hypergroups, Harmonic analysis and discrete potential theory (Frascati, 1991) , () 131 --143.

    • Search Google Scholar
  • HELEMSKII, A. YA., Banach and locally convex algebras, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1993. MR 94f:46001

    Banach and locally convex algebras , ().

  • JOHNSON, B. E., Cohomology in Banach algebras, Memoirs of the American Mathematical Society, No. 127, American Mathematical Society, Providence, RI, 1972. MR 51 # 11130

    Cohomology in Banach algebras , ().

  • JOHNSON, B. E., Weak amenability of group algebras, Bull. London Math. Soc. 23 (1991), 281-284. MR 92k:43004

    'Weak amenability of group algebras ' () 23 Bull. London Math. Soc. : 281 -284.

  • LAU, A. T. M., Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups, Fund. Math. 118 (1983), 161-175. MR 85k:43007

    'Analysis on a class of Banach algebras with applications to harmonic analysis on locally compact groups and semigroups ' () 118 Fund. Math. : 161 -175.

    • Search Google Scholar
  • MEDGHALCHI, A. R., The second dual algebra of a hypergroup, Math. Z. 210 (1992), 615-624. MR 93h:43007

    'The second dual algebra of a hypergroup ' () 210 Math. Z. : 615 -624.

  • MEDGHALCHI, A. R., Isometric isomorphisms on the dual and second dual of a hypergroup, Acta Math. Hungar. 74 (1997), 167-175. MR 98g:43004

    'Isometric isomorphisms on the dual and second dual of a hypergroup ' () 74 Acta Math. Hungar. : 167 -175.

    • Search Google Scholar
  • BOWLING, S. and DUNCAN, J., First order cohomology of Banach semigroup algebras, Semigroup Forum 56 (1998), 130-145. MR 98m:46092

    'First order cohomology of Banach semigroup algebras ' () 56 Semigroup Forum : 130 -145.

  • DESPIĆ, M. and GHAHRAMANI, F., Weak amenability of group algebras of locally compact groups, Canad. Math. Bull. 37 (1994), 165-167. MR 95c:43003

    'Weak amenability of group algebras of locally compact groups ' () 37 Canad. Math. Bull. : 165 -167.

    • Search Google Scholar
  • MEDGHALCHI, A. R. and POURBARAT, KH'., Left amenability of weighted groups, Bull. Iranian Math. Soc. 22 (1996), 41-55. MR 99a:43002

    'Left amenability of weighted groups ' () 22 Bull. Iranian Math. Soc. : 41 -55.

  • PATERSON, ALAN L. T., Amenability, Mathematical Surveys and Monographs, 29, American Mathematical Society, Providence, RI, 1988. MR 90e:43001

  • SKANTHARAJAH, M., Amenable hypergroups, Illinois J. Math. 36 (1992), 15-46. MR 92k:43002

    'Amenable hypergroups ' () 36 Illinois J. Math. : 15 -46.

  • BONSALL, F. F. and DUNCAN, J., Complete normed algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 80, Springer-Verlag, New York-Heidelberg, 1973. MR 54 # 11013

    Complete normed algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 80 , ().

    • Search Google Scholar