View More View Less
  • 1 Department of Mathematics and Mechanics St. Petersburg University Universitetskii pr. 28., Stary Peterhof, Ru-198504, St. Petersburg, Russia
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

We find a universal norming sequence in strong limit theorems for increments of sums of i.i.d. random variables with finite first moments and finite second moments of positive parts. Under various one-sided moment conditions our universal theorems imply the following results for sums and their increments: the strong law of large numbers, the law of the iterated logarithm, the Erdős-Rényi law of large numbers, the Shepp law, one-sided versions of the Csörgő-Révész strong approximation laws. We derive new results for random variables from domains of attraction of a normal law and asymmetric stable laws with index αЄ(1,2).

  • DEHEUVELS, P. and DEVROYE, L., Limit laws of Erdős-Rényi-Shepp type, Ann. Probab.15 (1987), 1363-1386. MR88f:60055

    'Limit laws of Erdős-Rényi-Shepp type ' () 15 Ann. Probab. : 1363 -1386.

  • DEHEUVELS, P., DEVROYE, L. and LYNCH, J., Exact convergence rate in the limit theorems of Erdős-Rényi and Shepp, Ann. Probab.14 (1986), 209-223. MR87d:60032

    'Exact convergence rate in the limit theorems of Erdős-Rényi and Shepp ' () 14 Ann. Probab. : 209 -223.

    • Search Google Scholar
  • EINMAHL, U. and MASON, D.M., Some universal results on the behaviour of increments of partial sums, Ann. Probab.24 (1996), 1388-1407. MR97m:60034

    'Some universal results on the behaviour of increments of partial sums ' () 24 Ann. Probab. : 1388 -1407.

    • Search Google Scholar
  • ERDŐS, P. and RÉNYI, A., On a new law of large numbers, J. Analyse Math.23 (1970), 103-111. MR42 # 6907

    'On a new law of large numbers ' () 23 J. Analyse Math. : 103 -111.

  • PETROV, V.V., Limit theorems of probability theory. Sequences of independent random variables, Oxford Studies in Probability, 4, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1995. MR96h:60048

    Limit theorems of probability theory. Sequences of independent random variables , ().

    • Search Google Scholar
  • PETROV, V.V., On the probabilities of large deviations for sums of independent random variables, Teor. Verojatnost. i Primenen.10 (1965), 310-322 (in Russian). MR32 # 3107

    'On the probabilities of large deviations for sums of independent random variables ' () 10 Teor. Verojatnost. i Primenen. : 310 -322.

    • Search Google Scholar
  • PRUITT, E.W., General one-sided laws of the iterated logarithm, Ann. Probab.9 (1981), 1-48. MR82k:60066

    'General one-sided laws of the iterated logarithm ' () 9 Ann. Probab. : 1 -48.

  • SHAO, Q.M., On a problem of Csörgő and Révész, Ann. Probab.17 (1989), 809-812. MR90e:60045

    'On a problem of Csörgő and Révész ' () 17 Ann. Probab. : 809 -812.

  • SENETA, E., Regularly varying functions, Lecture Notes in Mathematics, Vol. 508, Springer-Verlag, Berlin-New York, 1976. MR56 # 12189. Russian edition: Pravil'no menyayushchiesya funktsii, Nauka, Moskva, 1985. MR86m:26001

    Regularly varying functions , ().

  • SHEPP, L.A., A limit law concerning moving averages, Ann. Math. Statist.35 (1964), 424-428. MR29 # 4091

    'A limit law concerning moving averages ' () 35 Ann. Math. Statist. : 424 -428.

  • STEINEBACH, J., On a necessary condition for the Erdős-Rényi law of large numbers, Proc. Amer. Math. Soc.68 (1978), 97-100. MR57 # 1622

    'On a necessary condition for the Erdős-Rényi law of large numbers ' () 68 Proc. Amer. Math. Soc. : 97 -100.

    • Search Google Scholar
  • FROLOV, A.N., On one-sided strong laws for large increments of sums, Statist. Probab. Lett.37 (1998), 155-165. MR99d:60042

    'On one-sided strong laws for large increments of sums ' () 37 Statist. Probab. Lett. : 155 -165.

    • Search Google Scholar
  • FELLER, W., Limit theorems for probabilities of large deviations, Z. Wahrscheinlichkeitstheorie Verw. Gebiete14 (1969/1970), 1-20. MR42 # 5307

    'Limit theorems for probabilities of large deviations ' () 14 Z. Wahrscheinlichkeitstheorie Verw. Gebiete : 1 -20.

    • Search Google Scholar
  • CSÖRGő, M. and RÉVÉSZ, P., Strong approximations in probability and statistics, Akadémiai Kiadó, Budapest; Academic Press, New York, 1981. MR84d:60050

    Strong approximations in probability and statistics , ().

  • CSÖRGő, M. and STEINEBACH, J., Improved Erdős-Rényi and strong approximation laws for increments of partial sums, Ann. Probab.9 (1981), 988-996. MR 82k:60063

    'Improved Erdős-Rényi and strong approximation laws for increments of partial sums ' () 9 Ann. Probab. : 988 -996.

    • Search Google Scholar
  • CSÖRGő, S., Erdős-Rényi laws, Ann. Statist.7 (1979), 772-787. MR80g:60027

    'Erdős-Rényi laws ' () 7 Ann. Statist. : 772 -787.

  • DEHEUVELS, P., Functional Erdős-Rényi laws, Studia Sci. Math. Hungar.26 (1991), 261-295. MR93i:60056

    'Functional Erdős-Rényi laws ' () 26 Studia Sci. Math. Hungar. : 261 -295.

  • CSÁKI, E., FÖLDES, A. and KOMLÓS, J., Limit theorems for Erdős-Rényi type problems, Studia Sci. Math. Hungar.22 (1987), 321-332. MR89b:60052

    'Limit theorems for Erdős-Rényi type problems ' () 22 Studia Sci. Math. Hungar. : 321 -332.

    • Search Google Scholar
  • FROLOV, A.N., On the asymptotic behaviour of increments of sums of independent random variables, Dokl. Akad. Nauk.372 (2000), No. 5, 596-599 (in Russian). CMP 1 776 610

    'On the asymptotic behaviour of increments of sums of independent random variables ' () 372 Dokl. Akad. Nauk. : 596 -599.

    • Search Google Scholar
  • FROLOV, A.N., Limit theorems for increments of sums of independent random variables (to appear).

  • MASON, D.M., An extended version of the Erdős-Rényi strong law of large numbers, Ann. Probab.17 (1989), 257-265. MR91a:60082

    'An extended version of the Erdős-Rényi strong law of large numbers ' () 17 Ann. Probab. : 257 -265.

    • Search Google Scholar
  • MASON, D.M., A universal one-sided law of the iterated logarithm, Ann. Probab.22 (1994), 1826-1837. MR96b:60077

    'A universal one-sided law of the iterated logarithm ' () 22 Ann. Probab. : 1826 -1837.

  • ZINCHENKO, N.M., Asymptotics of the increments of stable stochastic processes with jumps of the same sign, Teor. Veroyatnost. i Primenen. 32 (1987), 793-796 (in Russian). MR89c:60042

    'Asymptotics of the increments of stable stochastic processes with jumps of the same sign ' () 32 Teor. Veroyatnost. i Primenen. : 793 -796.

    • Search Google Scholar
  • CSÁKI, E., On the increments of additive functionals, Studia Sci. Math. Hungar.26 (1991), 185-199. MR93i:60039

    'On the increments of additive functionals ' () 26 Studia Sci. Math. Hungar. : 185 -199.

  • CSÁKI, E. and CSORGÖ, M., Inequalities for increments of stochastic processes and moduli of continuity, Ann. Probab.20 (1992), 1031-1052. MR93c:60055

    'Inequalities for increments of stochastic processes and moduli of continuity ' () 20 Ann. Probab. : 1031 -1052.

    • Search Google Scholar

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
submission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Subscription fee 2022

Online subsscription: 688 EUR / 860 USD
Print + online subscription: 776 EUR / 970 USD

Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)