View More View Less
  • 1 Akademia Techniczno-Rolnicza, Im. Jana i Jędrzeja Śniadeckich, Instytut Matematyki I Fizyki Ul. Prof. S. Kaliskiego 7, Pl-85-796 Bydgoszcz, Poland
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Any sequence of positive homothetic copies of a planar convex body C with total area not smaller than 6.5 times the area of C permits a translative covering of C.

  • Lassak, M., Covering a plane convex body by four homothetical copies with the smallest positive ratio, Geom. Dedicata21 (1986), 157-167. MR88c:52013

    'Covering a plane convex body by four homothetical copies with the smallest positive ratio ' () 21 Geom. Dedicata : 157 -167.

    • Search Google Scholar
  • Lassak, M., Approximation of convex bodies by rectangles, Geom. Dedicata47 (1993), 111-117. MR94f:52004

    'Approximation of convex bodies by rectangles ' () 47 Geom. Dedicata : 111 -117.

  • Moon, J. W. and Moser, L., Some packing and covering theorems, Colloq. Math.17 (1967), 103-110. MR35#6040

    'Some packing and covering theorems ' () 17 Colloq. Math. : 103 -110.

  • Januszewski, J., Translative covering of a convex body with its positive homothetic copies, Proceedings of the International Scientific Conference on Mathematics (Źilina, 1998), 29-34. MR2000j:52025

    'Translative covering of a convex body with its positive homothetic copies ' , , .

    • Search Google Scholar
  • Meir, A. and Moser, L., On packing of squares and cubes, J. Comb. Th.5 (1968), 126-134. MR37#4716

    'On packing of squares and cubes ' () 5 J. Comb. Th. : 126 -134.

  • Moser, W. and Pach, J., Research problems in discrete geometry, Privately published collection of problems, 1994.

  • BÁLINT, V., BÁLINTOVÁ, B., BRANICKÁ, M., GREŠÁK, P., HRINKO, I., NOVOTNÝ, P. and STACHO, M., Translative covering by homothetic copies, Geom. Dedicata46 (1993), 173-180. MR94c:52014

    'Translative covering by homothetic copies ' () 46 Geom. Dedicata : 173 -180.

  • Bezdek, A. and Bezdek, K., Eine hinreichende Bedingung für die Überdeckung des Einheitswürfels durch homothetische Exemplare im n-dimensionalen euklidischen Raum, Beitr. Alg. Geom.17 (1984), 5-21. MR85h:52017

    'Eine hinreichende Bedingung für die Überdeckung des Einheitswürfels durch homothetische Exemplare im n-dimensionalen euklidischen Raum ' () 17 Beitr. Alg. Geom. : 5 -21.

    • Search Google Scholar
  • Groemer, H., Covering and packing properties of bounded sequences of convex sets, Mathematica29 (1982), 18-31. MR84b:52021

    'Covering and packing properties of bounded sequences of convex sets ' () 29 Mathematica : 18 -31.

    • Search Google Scholar