View More View Less
  • 1 Department of Mathematics and Statistics, University of Calgary Calgary AB, Canada T2N 1N4
  • | 2 Centre of Applied Mathematics, University of West Bohemia Univerzitní 22, 306 14 Plzeň, Czech Republic
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

A version of Sturm--Liouville theory is given for the one-dimensional p-Laplacian including the radial case. The treatment is modern but follows the strategy of Elbert's early work. Topics include a Prüfer-type transformation, eigenvalue existence, asymptotics and variational principles, and eigenfunction oscillation.

  • Otani, M., A Remark on certain nonlinear elliptic equations, Proc. Fac. Sci. Tokai Univ.19 (1984), 23-28. MR86c:35009

    'A Remark on certain nonlinear elliptic equations ' () 19 Proc. Fac. Sci. Tokai Univ. : 23 -28.

    • Search Google Scholar
  • Naito, Y., Uniqueness of positive solutions of quasilinear differential equations, Diff. Int. Equations8 (1995), 1813-1822. MR96q:34039

    'Uniqueness of positive solutions of quasilinear differential equations ' () 8 Diff. Int. Equations : 1813 -1822.

    • Search Google Scholar
  • Delpino, M., Manásevich, R. and Murúa, A. E., Existence and multiplicity of solutions with prescribed period for a second order quasilinear ODE, Nonlinear AnalysisTMA18 (1992), 79-92. MR92m:34055

    'Existence and multiplicity of solutions with prescribed period for a second order quasilinear ODE ' () TMA18 Nonlinear Analysis : 79 -92.

    • Search Google Scholar
  • Drábek, P. and Manásevich, R., On the closed solution to some nonhomogeneous eigenvalue problems with p-Laplacian, J. Differential and Integral Equations12(6), (1999), 773-788. MR2000i:34036

    'On the closed solution to some nonhomogeneous eigenvalue problems with p-Laplacian ' () 12 J. Differential and Integral Equations : 773 -788.

    • Search Google Scholar
  • Drábek, P. and Robinson, S. B., Resonance problems for the p-Laplacian, J. Functional Analysis169 (1999), 189-200. MR2000j:35096

    'Resonance problems for the p-Laplacian ' () 169 J. Functional Analysis : 189 -200.

  • Eberhart, W. and Elbert, Á., On the eigenvalues of a half-linear boundary value problem, Math. Nachr.213 (2000), 57-76. MR2001b:34035

    'On the eigenvalues of a half-linear boundary value problem ' () 213 Math. Nachr. : 57 -76.

    • Search Google Scholar
  • Atkinson, F. V., Discrete and Continuous Boundary Value Problems, Academic Press (1964). MR31#416

    Discrete and Continuous Boundary Value Problems , ().

  • Beesack, P., Hardy's inequality and its extensions, Pacific J. Math.11 (1961), 39-61. MR22#12187

    'Hardy's inequality and its extensions ' () 11 Pacific J. Math. : 39 -61.

  • Beesack, P., Integral inequalities involving a function and its derivative, Amer. Math. Monthly78 (1971), 705-741. MR48#4235

    'Integral inequalities involving a function and its derivative ' () 78 Amer. Math. Monthly : 705 -741.

    • Search Google Scholar
  • Binding, P. A., Browne, P. J. and Seddighi, K., Sturm-Liouville problems with eigenparameter dependent boundary conditions, Proc. Roy. Soc. Edinburgh125A (1993), 3555-3559. MR95k:34039

    'Sturm-Liouville problems with eigenparameter dependent boundary conditions ' () 125A Proc. Roy. Soc. Edinburgh : 3555 -3559.

    • Search Google Scholar
  • Elbert, Á., Takasi, K. and Tinagawa, T., An Oscillatory half-linear differential equation, Arch. Math.33 (1997), 355-361. MR98m:34071

    'An Oscillatory half-linear differential equation ' () 33 Arch. Math. : 355 -361.

  • Farby, C. and Fayyad, D., Periodic solutions of second order differential equations with a p-Laplacian and asymmetric nonlinearities, Rend. Ist. Mat. Univ. Trieste24 (1992), 207-227.

    'Periodic solutions of second order differential equations with a p-Laplacian and asymmetric nonlinearities ' () 24 Rend. Ist. Mat. Univ. Trieste : 207 -227.

    • Search Google Scholar
  • Friedlander, L., Asymptotic behaviour of the eigenvalues of the p-Laplacian, Comm. P.D.E. (1989), 1959-1069.

    'Asymptotic behaviour of the eigenvalues of the p-Laplacian ' () Comm. P.D.E. : 1959 -1069.

    • Search Google Scholar
  • FuČíak, S., NeČS, J., SouČEk, J. and SouČEk, V., Spectral analysis of nonlinear operators, Springer Lecture Notes in Mathematics346 (1973). MR57#7280

    'Spectral analysis of nonlinear operators ' () 346 Springer Lecture Notes in Mathematics .

    • Search Google Scholar
  • Guedda, M. and Veron, L., Bifurcation phenomena associated to the p-Laplacian operator, Trans. Amer. Math. Soc.310 (1988), 419-431. MR89j:35024

    'Bifurcation phenomena associated to the p-Laplacian operator ' () 310 Trans. Amer. Math. Soc. : 419 -431.

    • Search Google Scholar
  • Ince, E. L., Ordinary Differential Equations, Dover reprint (1993).

  • Kusano, T. and Swanson, C. A., Radial entire solutions of a class of quasilinear elliptic equations, J. Differential Equations83 (1990), 379-399. MR91i:35013

    'Radial entire solutions of a class of quasilinear elliptic equations ' () 83 J. Differential Equations : 379 -399.

    • Search Google Scholar
  • García Azorero, P. and Peral Alonso, I., Comportment asymptotique des valeurs propres du p-Laplacian, C.R. Acad. Sci. Paris301 (1988), 75-78.

    'Comportment asymptotique des valeurs propres du p-Laplacian ' () 301 C.R. Acad. Sci. Paris : 75 -78.

    • Search Google Scholar
  • Ghoussoub, N., Duality and Perturbation Methods in Critical Point Theory, Cambridge University Press (1993). MR95a:58021

    Duality and Perturbation Methods in Critical Point Theory , ().

  • Ladyzhenskaya, O. A., The Mathematical Theory of Viscous Incompressible Flow, 2nd ed., Gordon and Breach (New York, 1969). MR40#7610

    The Mathematical Theory of Viscous Incompressible Flow , ().

  • Lions, J. L., Quelques methodes de résolution des problémes aux limites non linéaires, Dunod (Paris, 1969). MR41#4326

    Quelques methodes de résolution des problémes aux limites non linéaires , ().

  • Lindqvist, P., Note on a nonlinear eigenvalue problem, Rocky Mount. J. Math.23 (1993), 281-288. MR94d:34031

    'Note on a nonlinear eigenvalue problem ' () 23 Rocky Mount. J. Math. : 281 -288.

  • Lindqvist, P., Some remarkable sine and cosine functions, Ricerche di Matematica44 (1995), 269-290. MR99q:33001

    'Some remarkable sine and cosine functions ' () 44 Ricerche di Matematica : 269 -290.

  • Li, H. J. and Yeh, C. C., Sturmian comparison theorem for half-linear second order differential equations, Proc. Royal Soc. Edinburgh125A (1995), 1193-1204.MR96i:34067

    'Sturmian comparison theorem for half-linear second order differential equations ' () 125A Proc. Royal Soc. Edinburgh : 1193 -1204.

    • Search Google Scholar
  • MaŘíak, R., Half-linear differential equations, PhD Thesis (Brno, 2000).

  • Reichel, W. and Walter, W., Sturm-Liouville type problems for the p-Laplacian under asymptotic nonresonance conditions, J. Differential Equations156 (1999), 50-70. MR2000e:34036

    'Sturm-Liouville type problems for the p-Laplacian under asymptotic nonresonance conditions ' () 156 J. Differential Equations : 50 -70.

    • Search Google Scholar
  • Szulkin, A., Ljusternik-Schnirelmannn theory on C1-manifolds, Ann. Inst. Henri Poincaré, Vol. 5, no. 2 (1988), 119-139. MR90a:58027

    'Ljusternik-Schnirelmannn theory on C1-manifolds ' () 5 Ann. Inst. Henri Poincaré : 119 -139.

    • Search Google Scholar
  • Takaşi, K., Ogata, A. and Usani, H., On the oscillation of solutions of second order quasilinear ordinary differential equations, Hiroshima Math. J.23 (1993), 645-667. MR95g:34053

    'On the oscillation of solutions of second order quasilinear ordinary differential equations ' () 23 Hiroshima Math. J. : 645 -667.

    • Search Google Scholar
  • Takaşi, K. and Yosida, N., Nonoscillation theorems for a class of quasilinear differential equations of second order, J. Math. Anal. Appl.189 (1995), 115-127. MR97f:34019

    'Nonoscillation theorems for a class of quasilinear differential equations of second order ' () 189 J. Math. Anal. Appl. : 115 -127.

    • Search Google Scholar
  • Walter, W., Sturm-Liouville theory for the radial Δp-operator, Math. Z.227 (1998), 175-185. MR99b:35073

    'Sturm-Liouville theory for the radial Δp-operator ' () 227 Math. Z. : 175 -185.

  • Binding, P. A., Drábek, P. and Huang, Y. X., On the Fredholm alternative for the p-Laplacian, Proc. Amer. Math. Society125 (1997), 3555-3559. MR98b:35058

    'On the Fredholm alternative for the p-Laplacian ' () 125 Proc. Amer. Math. Society : 3555 -3559.

    • Search Google Scholar
  • Binding, P. A. and Volkmer, H., Existence and asymptotics of eigenvalues of problems of Sturm-Liouville and Dirac type, J. Differential Equ.172 (2001), 116-133. MR2002d:34152

    'Existence and asymptotics of eigenvalues of problems of Sturm-Liouville and Dirac type ' () 172 J. Differential Equ. : 116 -133.

    • Search Google Scholar
  • Cuesta, M., On the Fučík Spectrum of the Laplacian and the p-Laplacian, in: Proceedings of Seminar in Differential Equations (P. Drábek, ed.), University of West Bohemia (Pilsen, 2000), pp. 67-96.

    'On the Fučík Spectrum of the Laplacian and the p-Laplacian ' , , .

  • Delpino, M. and Manásevich, R., Global bifurcation from the eigenvalues of the p-Laplacian, J. Differential Equations92 (1991), 226-251.

    'Global bifurcation from the eigenvalues of the p-Laplacian ' () 92 J. Differential Equations : 226 -251.

    • Search Google Scholar
  • Elbert, Á. A half-linear second order differential equation, in: Qualitative theory of differential equations, Coll. Math. Soc. J. Bolyai 30 (Szeged, 1979), 153-179. MR84g:34008

    'A half-linear second order differential equation, in: ' () 30 Qualitative theory of differential equations : 153 -179.

    • Search Google Scholar
  • Elbert, Á. The Wronskian and the half-linear differential equations, Studia Sci. Math. Hung.15 (1980), 101-105. MR84k:34013

    'The Wronskian and the half-linear differential equations ' () 15 Studia Sci. Math. Hung. : 101 -105.

    • Search Google Scholar
  • Elbert, Á. Qualitative properties of the half-linear second order differential equations, Communications of Computer and Automation Inst. of Hung. Acad. Sci.26 (1982), 27-33. MR85d:34036

    'Qualitative properties of the half-linear second order differential equations ' () 26 Communications of Computer and Automation Inst. of Hung. Acad. Sci. : 27 -33.

    • Search Google Scholar
  • Elbert, Á. Oscillation and nonoscillation theorems for some nonlinear ordinary differential equations, Springer Lecture Notes in Mathematics964 (1982), 187-212. MR84h:34056

    'Oscillation and nonoscillation theorems for some nonlinear ordinary differential equations ' () 964 Springer Lecture Notes in Mathematics : 187 -212.

    • Search Google Scholar
  • Pucci, P. and Serrin, J., Continuation and limit properties for solutions of strongly nonlinear second order differential equations, Asympt. Anal.4 (1991), 97-160. MR92j:34069

    'Continuation and limit properties for solutions of strongly nonlinear second order differential equations ' () 4 Asympt. Anal. : 97 -160.

    • Search Google Scholar
  • Rabinowitz, P. H., Some global results for nonlinear eigenvalue problems, J. Functional Analysis7 (1971), 487-513. MR46#745

    'Some global results for nonlinear eigenvalue problems ' () 7 J. Functional Analysis : 487 -513.

    • Search Google Scholar

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
sumbission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)