During the last decade, a number of explicit results about the distributions of exponential functionals of Brownian motion with drift:
In the present paper, we rely extensively on these results to show the existence of limiting measures as
Although a large number of similar studies have been made for, say, one-dimensional diffusions, the present study, which focuses upon Brownian exponential functionals, appears to be new.
Alili, L. and Gruet, J.-C ., An explanation of a generalized Bougerol's identity in terms of hyperbolic Brownian motion, in [27]. MR2000a:60150
Baudoin, F ., Further exponential generalization of Pitman's 2M - X theorem, Elect. Comm. in Probab. 7 (2002), 37-46. MR2003e:60179
Donati-Martin, C ., Ghomrasni, R. and Yor, M ., On certain markov processes attached to exponential functionals of Brownian motion; application to Asian options, Rev. Mat. Iberoamericana 17 (2001), 179-193. MR2002f:60145
Donati-Martin, C ., Matsumoto, H. and Yor, M ., On positive and negative moments of the integral of geometric Brownian motions, Stat. Probab. Lett. 49 (2000), 45-52. MR2000f:60156
Donati-Martin, C ., Matsumoto, H. and Yor, M ., Some absolute continuity relationships for certain anticipative transformations of geometric Brownian motions, Publ. Res. Inst. Math. Sci. Kyoto 37 (2001), 295-326. MR2002h:60170
Donati-Martin, C ., Matsumoto, H. and Yor, M ., The law of geometric Brownian motion and its integral, revisited; application to conditional moments, In: Mathematical Finance, Bachelier Congress 2000 (H. Geman , D. Madan , S. R. Pliska and T. Vorst , eds.), Springer, Berlin (2002), pp. 221-243. MR 1960566
Dufresne, D ., The distribution of a perpetuity, with applications to risk theory and pension funding, Scand. Actuar. J. (1990), 39-79. MR92i:62195
Dufresne. D., Laguerre series for Asian and other options, Math. Finance 10 (2000), 407-428. MR2001i:91058
Dufresne, D ., An affine property of the reciprocal Asian option process, Osaka J. Math. 38 (2001), 379-381. MR 1933627
Dufresne, D ., The integral of geometric Brownian motion, Adv. Appl. Probab. 33 (2001), 223-241. MR2002c:60132
Gruet, J.-D ., Semi-groupe du mouvement Brownien hyperbolique, Stochastics and Stochastics Reports 56 (1996), 53-61. MR98b:60135
Hariya, Y. and Yor, M ., Ou an extension of Dufresne's relation between exponential Brownian functionals from opposite drifts to two different drifts: A short proof, To Appear In Stat. Probab. Lett.
Ikeda, N. and Matsumoto, H ., Brownian motion on the hyperbolic plane and Selberg trace formula, J. Fund. Anal. 162 (1999), 63-110. MR2000j:11077
Kawazu, K. and Tanaka, H ., On the maximum of a diffusion process in a drifted Brownian environment, Sém. Prob. XXVII, Lect. Notes. in Math. 1557, Springer, Berlin (1991), 78-85 MR96j:60133
Kotani, S ., Analytic approach to Yor's formula of exponential additive functionals of Brownian motion, In: Itô's stochastic calculus and probability theory (N. Ikeda , S. Watanabe , M.Fnkushirna and H.Kunita , eds.), Springer, Tokyo (1996),185-195. MR99c:60180
Lebedev, N. N ., Special functions and their applications, Dover, New York (1972). MR50#2568
Matsumoto, H. and Yor, M ., A version of Pitman's 2M - X theorem for geometric Brownian motions, C.R.A.S. Paris, Serie I 328 (1999), 1067-1074. MR2000d:60134
Matsumoto, H. and Yor, M ., An analogue of Pitman's 2M - X theorem for exponential Wiener functionals, Part I: A time-inversion approach, Nagoya Math. J. 159 (2000), 125-166. MR2001j:60145
Matsumoto, H. and Yor, M ., An analogue of Pitman's 2M - X theorem for exponential Wiener functionals, Part II: The role of the generalized inverse Gaussian laws, Nagoya Math. J. 162 (2001), 65-86. MR2002d:60070
Matsumoto, H. and Yor, M ., A relationship between Brownian motions with opposite drifts via certain enlargements of the Brownian filtration, Osaka J. Math. 38 (2001), 383-398. MR2002c:60134
Matsumoto, H. and Yor, M ., On Dufresne's relation between the probability laws of exponential functionals of Brownian motions with different drifts, Adv. in Appl. Probab. 35 (2003), 184-206. MR 1975510
Matsumoto, H. and Yor, M ., Interpretation via Brownian motion of some independence properties between GIG and gamma variables, Stat. Probab. Lett. 61 (2003), 253-259. MR2003m:60232
Preston, C. J ., A generalization of the FKG inequality, Comm. Math. Phys. 36 (1974), 233-241. MR49#6301
Revuz, D. and Yor, M ., Continuous Martingales and Brownian Motion (3rd Edition), Springer, Berlin (1999). MR2000h:60050
Vallois, P ., La loi gaussienne inverse généralisée comme premier ou dernier temps de passage de diffusions, Bull. Sc. Math., 2e Serie 115 (1991), 301-368. MR92k:60183
Yor, M ., On some exponential functionals of Brownian Motion, Adv. in Appl. Pmbab. 24 (1992), 509-531. MR94b:60095
Yor, M . (Ed.), Exponential Functional, and Principal Values related to Brownian motion, A collection of research papers, Biblioteca de la Revista Mathemática Iberoamericana (1997). MR99d:60003
Yor, M ., Exponential Functionals of Brownian motion and Related Processes, Springer, Berlin (2001). MR2003f:60147