View More View Less
  • 1 Babeş-Bolyai University, Faculty of Mathematics and Computer Science Str. Kogălniceanu, Nr. 1, 3400 Cluj-Napoca, Romania
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

In the present paper we define a general class Bn,a, a =1, of Durrmeyer-Bézier type of linear positive operators. Our main aim is to estimate the rate of pointwise convergence for functions f at those points x at which the one-sided limits f(x+) and f(x-) exist. As regards these functions defined on an interval J certain conditions are required. We discuss two distinct cases: Int (J)=(0,8) and Int (J)=(0,1).

  • Khan, M. K., On the Rate of Convergence of Bernstein Power Series for Functions of Bounded Variation, Journal of Approximation Theory57 (1989), 90-103. MR90d:41043

    'On the Rate of Convergence of Bernstein Power Series for Functions of Bounded Variation ' () 57 Journal of Approximation Theory : 90 -103.

    • Search Google Scholar
  • Sahai, A. and Prasad, G., On the Rate of Convergence for Modified Szász-Mirakyan Operators on Functions of Bounded Variation, Publications de l'Institut Mathématique, Beograd53(67) (1993), 73-80. MR95m:41039

    'On the Rate of Convergence for Modified Szász-Mirakyan Operators on Functions of Bounded Variation ' () 53 Publications de l'Institut Mathématique, Beograd : 73 -80.

    • Search Google Scholar
  • Zeng, X. M., Bounds for Bernstein Basis Functions and Meyer-König Zeller Basis Functions, Journal of Mathematical Analysis and Applications219 (1998), 364-376. MR98m:41042

    'Bounds for Bernstein Basis Functions and Meyer-König Zeller Basis Functions ' () 219 Journal of Mathematical Analysis and Applications : 364 -376.

    • Search Google Scholar
  • Bastien, G. and Rogalski, M., Convexité, complète monotonie et inégalités sur les fonctions zěeta et gamma, sur les fonctions des opérateurs de Baskakov et sur des fonctions arithmétiques, Canadian J. Math., 54 (2002), 5, 916-944. MR2003i:11121

    'Convexité, complète monotonie et inégalités sur les fonctions zěeta et gamma, sur les fonctions des opérateurs de Baskakov et sur des fonctions arithmétiques ' () 54 Canadian J. Math. : 916 -944.

    • Search Google Scholar
  • Bojanic, R. and Khan, M. K., Rate of Convergence of Some Operators of Functions with Derivatives of Bounded Variation, Atti. Sem. Mat. Fis. Univ. Modena, 39 (1991), 495-512. MR93d:41021

    'Rate of Convergence of Some Operators of Functions with Derivatives of Bounded Variation ' () 39 Atti. Sem. Mat. Fis. Univ. Modena : 495 -512.

    • Search Google Scholar
  • Guo, S., On the Rate of Convergence of the Integrated Meyer-König and Zeller Operators for Functions of Bounded Variation, Journal of Approximation Theory, 56 (1989), 245-255. MR90g:41031

    'On the Rate of Convergence of the Integrated Meyer-König and Zeller Operators for Functions of Bounded Variation ' () 56 Journal of Approximation Theory : 245 -255.

    • Search Google Scholar
  • Gupta, V., A note on the rate of convergence of Durrmeyer type operators for functions of bounded variation, Soochow J. Math.23 (1997), 1, 115-118. MR97i:41033

    'A note on the rate of convergence of Durrmeyer type operators for functions of bounded variation ' () 23 Soochow J. Math. : 115 -118.

    • Search Google Scholar
  • Gupta, V., Inequality Estimate on Durrmeyer Type Operators, Nonlinear Funct. Anal. & Appl.7(2002), No. 3, 481-494. MR2003i:41026

    'Inequality Estimate on Durrmeyer Type Operators ' () 7 Nonlinear Funct. Anal. & Appl. : 481 -494.

    • Search Google Scholar
  • Bojanic, R. and Vuilleumier, M., On the Rate of Convergence of Fourier-Legendre Series of Functions of Bounded Variation, Journal of Approximation Theory, 31 (1981), 67-79. MR82j:42018

    'On the Rate of Convergence of Fourier-Legendre Series of Functions of Bounded Variation ' () 31 Journal of Approximation Theory : 67 -79.

    • Search Google Scholar
  • Cheng, F., On the Rate of Convergence of Bernstein Polynomials of Functions of Bounded Variation, Journal of Approximation Theory, 39 (1983), 259-274. MR85g:41014

    'On the Rate of Convergence of Bernstein Polynomials of Functions of Bounded Variation ' () 39 Journal of Approximation Theory : 259 -274.

    • Search Google Scholar
  • Derriennic, M. M., Sur l'approximation des fonctions intégrables sur [0,1] par des polynomes de Bernstein modifiés, Journal of Approximation Theory, 31 (1981), 325-343. MR82m:41044

    'Sur l'approximation des fonctions intégrables sur [0,1] par des polynomes de Bernstein modifiés ' () 31 Journal of Approximation Theory : 325 -343.

    • Search Google Scholar
  • Gupta, V. and Abel, U., On the Rate of convergence of Bézier variant of Szász-Durrmeyer operators, Analysis in Theory and Applications19 (2003), 1, 81-88. MR2004f:41025

    'On the Rate of convergence of Bézier variant of Szász-Durrmeyer operators ' () 19 Analysis in Theory and Applications : 81 -88.

    • Search Google Scholar
  • Gupta, V. and Arya, K. V., On the Rate of Pointwise Convergence of Modified Baskakov Type Operators for Functions of Bounded Variation, Kyungpook Math. J.38 (1998), 283-291. MR99m:41039

    'On the Rate of Pointwise Convergence of Modified Baskakov Type Operators for Functions of Bounded Variation ' () 38 Kyungpook Math. J. : 283 -291.

    • Search Google Scholar
  • Gupta, V. and Pant, R. P., Rate of Convergence for the Modified Szász-Mirakyan Operators on Functions of Bounded Variation, Journal of Mathematical Analysis and Applications233 (1999), 476-483. MR2000c:41030

    'Rate of Convergence for the Modified Szász-Mirakyan Operators on Functions of Bounded Variation ' () 233 Journal of Mathematical Analysis and Applications : 476 -483.

    • Search Google Scholar
  • Heilmann, M. and Müller, M. W., On simultaneous approximation by the method of Baskakov Durrmeyer operators, Numerical Functional Analysis and Optimization10 (1989), 127-138. MR90f:41024

    'On simultaneous approximation by the method of Baskakov Durrmeyer operators ' () 10 Numerical Functional Analysis and Optimization : 127 -138.

    • Search Google Scholar
  • Zeng, X. M. and Chen, W., On the Rate of Convergence of the Generalized Durrmeyer Type Operators for Functions of Bounded Variation, Journal of Approximation Theory102 (2000), 1-12. MR2001b:41002

    'On the Rate of Convergence of the Generalized Durrmeyer Type Operators for Functions of Bounded Variation ' () 102 Journal of Approximation Theory : 1 -12.

    • Search Google Scholar
  • Aniol, G., On the Rate of Convergence of Some Discrete Operators, Demonstratio Mathematica27 (1994), No. 2, 367-377. MR95i:41042

    'On the Rate of Convergence of Some Discrete Operators ' () 27 Demonstratio Mathematica : 367 -377.

    • Search Google Scholar
  • Aniol, G., On the Rate of Pointwise Convergence of the Kantorovich-type Operators, Fasciculi Mathematici29 (1999), 5-15. MR2000m:41022

    'On the Rate of Pointwise Convergence of the Kantorovich-type Operators ' () 29 Fasciculi Mathematici : 5 -15.

    • Search Google Scholar

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
sumbission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Subscription fee 2022

Online subsscription: 688 EUR / 860 USD
Print + online subscription: 776 EUR / 970 USD

Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)