View More View Less
  • 1 Department of Mathematics, Harbin Institute ofTechnology Harbin, 150001, China
  • 2 Department of Mathematics, Harbin Institute ofTechnology Harbin, 150001, China
  • 3 Department of Mathematics, New Mexico State University Las Cruces, NM 88003, U.S.A.
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

The key point of subseries convergence is discovered and the strongest Orlicz-Pettis-type result is established.

  • Antosik, P. and Swartz, C., Matrix Methods in Analysis, Springer-Verlag, 1985. MR 87b:46079

    Matrix Methods in Analysis , ().

  • Diestel, J. and Faires, B., On vector measures, Trans. Amer. Math. Soc., 198 (1974), 253-271. MR 50#2912

    'On vector measures ' () 198 Trans. Amer. Math. Soc. : 253 -271.

  • Graves, W. and Ruess, W., Compactness in space of vector-valued measures and natural Mackey topology for spaces of bounded measurable functions, Con-temp. Math., 2 (1980), 189-203. MR 82j:46037 [6] Kalton, N. J., Spaces of compact operators, Math. Ann., 208 (1974), 267-278. MR 49#5904

    'Compactness in space of vector-valued measures and natural Mackey topology for spaces of bounded measurable functions ' () 2 Con-temp. Math. : 189 -203.

    • Search Google Scholar
  • Kaftal, V. and Weiss, G., A Riemann type theorem for unconditional convergence of operators, Proc. Amer. Math. Soc., 98 (1986), 431-435.

    'A Riemann type theorem for unconditional convergence of operators ' () 98 Proc. Amer. Math. Soc. : 431 -435.

    • Search Google Scholar
  • Ronglu, Li and Swartz, C., K-convergence and the Orlicz-Pettis theorem, Publ. L'institute Math., 49 (1991), 117-122. MR 92j46013

    'K-convergence and the Orlicz-Pettis theorem ' () 49 Publ. L'institute Math. : 117 -122.

  • Ricker, W., Vector measures with values in the compact operators, Proc. Amer. Math. Soc., 102 (1988), 441-442. MR 90f:28007

    'Vector measures with values in the compact operators ' () 102 Proc. Amer. Math. Soc. : 441 -442.

    • Search Google Scholar
  • Wilansky, A., Modern Methods in Topological Vector Spaces, McGraw-Hill, N.Y., 1978. MR 81d:46001

    Modern Methods in Topological Vector Spaces , ().

  • Dierolf, P. Theorems of the Orlicz-Pettis-type for locally convex spaces, Manuscripta Math., 20 (1977), 73-94. MR 55#1018

    'Theorems of the Orlicz-Pettis-type for locally convex spaces ' () 20 Manuscripta Math. : 73 -94.

    • Search Google Scholar
  • Swartz, C., Orlicz-Pettis theorems for operators, SEA Bull. Math., vol. 12, 1 (1988), 31-38. MR 90a:47107

    'Orlicz-Pettis theorems for operators ' () 12 SEA Bull. Math. : 31 -38.

  • Swartz, C., Unconditionally convergent series of compact operators, Comment. Math. Univ. Carolinae, 30 (1989), 321-322. MR 90g:47037

    'Unconditionally convergent series of compact operators ' () 30 Comment. Math. Univ. Carolinae : 321 -322.

    • Search Google Scholar
  • Swartz, C., Infinite Matrices and the Gliding Hump, World Sci., Singapore-London, 1996. MR 98b:46002

    Infinite Matrices and the Gliding Hump , ().

  • Thomas, G. E. F., L'integration par rapport a une measure de Radon vectorielle, Ann. Inst. Fourier, 20 (1970), 55-191. MR 57#3348

    'L'integration par rapport a une measure de Radon vectorielle ' () 20 Ann. Inst. Fourier : 55 -191.

    • Search Google Scholar
  • Bennett, G. and Kalton, N. J., FK-spaces containing c0, Duke Math. J., 39 (1972), 561-582. MR 46#9695

    () 39 Duke Math. J. : 561 -582.

  • Tweddle, I., Unconditional convergence and vector-valued measures, J. London Math. Soc., 2 (1970), 603-610. MR 42#5006

    'Unconditional convergence and vector-valued measures ' () 2 J. London Math. Soc. : 603 -610.

    • Search Google Scholar