View More View Less
  • 1 University of Łódź Faculty of Mathematics Łódź Poland
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

We investigate various aspects of stochastic integration in finite von Neumann algebras. For integration with respect to a bounded L2 -martingale the idea of treating the integral as a bounded operator is developed. Several classes of integrable processes are defined, it turns out that some of them form a Banach or C *-algebra. We find representations of these algebras and establish relations between the von Neumann algebras generated by these representations. Finally, we characterize the range of the stochastic integration operator.

  • Barnett, C., Goldstein, S. and Wilde, I. F. , Quantum stopping times and Doob-Meyer decompositions, J. Operator Theory35 (1996), 85–106. MR97d :81104

    Wilde I. F. , 'Quantum stopping times and Doob-Meyer decompositions ' (1996 ) 35 J. Operator Theory : 85 -106.

    • Search Google Scholar
  • Barnett, C. and Lyons, T. , Stopping noncommutative processes, Math. Proc. Cambridge Philos. Soc.99 (1986), 151–161. MR87b :46067

    Lyons T. , 'Stopping noncommutative processes ' (1986 ) 99 Math. Proc. Cambridge Philos. Soc. : 151 -161.

    • Search Google Scholar
  • Barnett, C., Streater, R. F. and Wilde, I. F. , The Itô-Clifford integral, J. Funct. Anal.48 (1982), 172–212. MR84m :46079a

    Wilde I. F. , 'The Itô-Clifford integral ' (1982 ) 48 J. Funct. Anal. : 172 -212.

  • Barnett, C., Streater, R. F. and Wilde, I. F. , The Itô-Clifford integral II, Stochastic differential equations, J. London Math. Soc.27 (1983), 373–384. MR84m :46079b

    Wilde I. F. , 'The Itô-Clifford integral II, Stochastic differential equations ' (1983 ) 27 J. London Math. Soc. : 373 -384.

    • Search Google Scholar
  • Barnett, C., Streater, R. F. and Wilde, I. F. , The Itô-Clifford integral III, The Markov property of solutions of stochastic differential equations, Comm. Math. Phys.89 (1983), 13–17. MR84m :46079c

    Wilde I. F. , 'The Itô-Clifford integral III, The Markov property of solutions of stochastic differential equations ' (1983 ) 89 Comm. Math. Phys. : 13 -17.

    • Search Google Scholar
  • Barnett, C., Streater, R. F. and Wilde, I. F. , The Itô-Clifford integral IV, A Radon-Nikodym Theorem and bracket processes, J. Operator Theory11 (1984), 255–271. MR86e :46054

    Wilde I. F. , 'The Itô-Clifford integral IV, A Radon-Nikodym Theorem and bracket processes ' (1984 ) 11 J. Operator Theory : 255 -271.

    • Search Google Scholar
  • Barnett, C., Streater, R. F. and Wilde, I. F. , Quasi-free quantum stochastic integrals for the CAR and CCR, J. Funct. Anal.52 (1983), 19–57. MR85b :46079

    Wilde I. F. , 'Quasi-free quantum stochastic integrals for the CAR and CCR ' (1983 ) 52 J. Funct. Anal. : 19 -57.

    • Search Google Scholar
  • Barnett, C., Streater, R. F. and Wilde, I. F. , Stochastic integrals in an arbitrary probability gauge space, Math. Proc. Cambridge Philos. Soc.94 (1983), 541–551. MR85g :46079

    Wilde I. F. , 'Stochastic integrals in an arbitrary probability gauge space ' (1983 ) 94 Math. Proc. Cambridge Philos. Soc. : 541 -551.

    • Search Google Scholar
  • Barnett, C. and Thakrar, B. , Time projections in a von Neumann algebra, J. Operator Theory18 (1987), 19–31.

    Thakrar B. , 'Time projections in a von Neumann algebra ' (1987 ) 18 J. Operator Theory : 19 -31.

    • Search Google Scholar
  • Barnett, C. and Thakrar, B. , A non-commutative random stopping theorem, J. Funct. Anal.88 (1990), 342–350. MR91e :46084

    Thakrar B. , 'A non-commutative random stopping theorem ' (1990 ) 88 J. Funct. Anal. : 342 -350.

    • Search Google Scholar
  • Barnett, C. and Wilde, I. F. , Random times and time projections, Proc. Amer. Math. Soc.110 (1990), 425–440. MR92a :81087

    Wilde I. F. , 'Random times and time projections ' (1990 ) 110 Proc. Amer. Math. Soc. : 425 -440.

    • Search Google Scholar
  • Barnett, C. and Wilde, I. F. , Random times, predictable processes and stochastic integration in finite von Neumann algebras, Proc. London Math. Soc.67 (1993), 355–383. MR94h :46100

    Wilde I. F. , 'Random times, predictable processes and stochastic integration in finite von Neumann algebras ' (1993 ) 67 Proc. London Math. Soc. : 355 -383.

    • Search Google Scholar
  • Biane, Ph. and Speicher, R. , Stochastic calculus with respect to free Brownian motion and analysis in Wigner space, Probab. Theory Related Fields112 (1998), 373–409. MR99i :60108

    Speicher R. , 'Stochastic calculus with respect to free Brownian motion and analysis in Wigner space ' (1998 ) 112 Probab. Theory Related Fields : 373 -409.

    • Search Google Scholar
  • Carlen, E. A. and Krée, P. , On martingale inequalities in non-commutative stochastic analysis, J. Funct. Anal.158 (1998), 475–508. MR99g :81111

    Krée P. , 'On martingale inequalities in non-commutative stochastic analysis ' (1998 ) 158 J. Funct. Anal. : 475 -508.

    • Search Google Scholar
  • Carlen, E. A. and Lieb, E. H. , Optimal hypercontractivity for Fermi fields and related noncommutative integration inequalities, Comm. Math. Phys.155 (1993), 27–46. MR94h :46101

    Lieb E. H. , 'Optimal hypercontractivity for Fermi fields and related noncommutative integration inequalities ' (1993 ) 155 Comm. Math. Phys. : 27 -46.

    • Search Google Scholar
  • Goldstein, S. , Conditional expectation and stochastic integrals in non-commutative Lp -spaces, Math. Proc. Cambridge Philos. Soc.110 (1991), 365–383. MR92k :46108

    Goldstein S. , 'Conditional expectation and stochastic integrals in non-commutative Lp-spaces ' (1991 ) 110 Math. Proc. Cambridge Philos. Soc. : 365 -383.

    • Search Google Scholar
  • Hudson, R. L. and Lindsay, J. M. , A noncommutative martingale representation theorem for non-Fock quantum Brownian motion, J. Funct. Anal.61 (1985), 202–221. MR87a :46104

    Lindsay J. M. , 'A noncommutative martingale representation theorem for non-Fock quantum Brownian motion ' (1985 ) 61 J. Funct. Anal. : 202 -221.

    • Search Google Scholar
  • Hudson, R. L. and Parthasarathy, K. R. , Quantum Itô’s formula and stochastic evolutions, Comm. Math. Phys.93 (1984), 301–323. MR86e :46057

    Parthasarathy K. R. , 'Quantum Itô’s formula and stochastic evolutions ' (1984 ) 93 Comm. Math. Phys. : 301 -323.

    • Search Google Scholar
  • Lindsay, J. M. , Fermion martingales, Probab. Theory Related Fields71 (1986), 307–320. MR87b :46068

    Lindsay J. M. , 'Fermion martingales ' (1986 ) 71 Probab. Theory Related Fields : 307 -320.

  • Lindsay, J. M. and Wilde, I. F. , On non-Fock boson stochastic integrals, J. Funct. Anal.65 (1986), 76–82. MR87d :46072

    Wilde I. F. , 'On non-Fock boson stochastic integrals ' (1986 ) 65 J. Funct. Anal. : 76 -82.

  • Pisier, G. and Xu, Q. , Noncommutative martingale inequalities, Comm. Math. Phys.189 (1997), 667–698. MR98m :46079

    Xu Q. , 'Noncommutative martingale inequalities ' (1997 ) 189 Comm. Math. Phys. : 667 -698.

  • Stratila, Ş. and Zsidó, L. , Lectures on von Neumann Algebras , Editura Academiei, Bucureşti and Abacus Press, Tunbridge Wells (Kent, 1979). MR81j :46089

    Zsidó L. , '', in Lectures on von Neumann Algebras , (1979 ) -.

  • Yeadon, F. J. , Non-commutative Lp -spaces, Math. Proc. Cambridge Philos. Soc.77 (1975), 91–102. MR50 #5494

    Yeadon F. J. , 'Non-commutative Lp-spaces ' (1975 ) 77 Math. Proc. Cambridge Philos. Soc. : 91 -102.

    • Search Google Scholar

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
sumbission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Subscription fee 2022

Online subsscription: 688 EUR / 860 USD
Print + online subscription: 776 EUR / 970 USD

Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)