Let T and S be Hilbert space operators such that Weyl’s theorem holds for both of them. In general, it does not follow that Weyl’s theorem holds for the direct sum T ⊕ S . We give asymmetric sufficient conditions on T and S to ensure that the direct sum T ⊕ S satisfies Weyl’s theorem. It is assumed that just one of the direct summands satisfies Weyl’s theorem but is not necessarily isoloid, while the other has no isolated points in its spectrum.
Berberian, S. K. , An extension of Weyl’s theorem to a class of not necessarily normal operators, Michigan Math. J. 16 (1969), 273–279. MR 40 #3335
Berberian S. K. , 'An extension of Weyl’s theorem to a class of not necessarily normal operators ' (1969 ) 16 Michigan Math. J. : 273 -279.
Berberian, S. K. , The Weyl spectrum of an operator, Indiana Univ. Math. J. 20 (1970), 529–544. MR 43 #5344
Berberian S. K. , 'The Weyl spectrum of an operator ' (1970 ) 20 Indiana Univ. Math. J. : 529 -544.
Coburn, L. A. , Weyl’s theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285–288. MR 34 #1846
Coburn L. A. , 'Weyl’s theorem for nonnormal operators ' (1966 ) 13 Michigan Math. J. : 285 -288.
Conway, J. B. , A Course in Functional Analysis , 2nd ed., Springer (New York, 1990). MR 91e :46001
Conway J. B. , '', in A Course in Functional Analysis , (1990 ) -.
Buggal B. P. , and Djordjević, S. V. , Generalized Weyl’s theorem for a class of operators satisfying a norm condition, Math. Proc. Royal Irish Acad. 104 (2004), 75–81 (corringendum submitted). MR 2005k :47045
Djordjević S. V. , 'Generalized Weyl’s theorem for a class of operators satisfying a norm condition ' (2004 ) 104 Math. Proc. Royal Irish Acad. : 75 -81.
Duggal, B. P., Djordjević, S. V. and Kubrusly, C. S. , Kato type operators and Weyl’s theorem, J. Math. Anal. Appl. 309 (2005), 433–441. MR 2154126
Kubrusly C. S. , 'Kato type operators and Weyl’s theorem ' (2005 ) 309 J. Math. Anal. Appl. : 433 -441.
Duggal, B. P., Djordjević, S. V. and Kubrusly, C. S. , Hereditarily normaloid contractions, Acta Sci. Math. (Szeged) 71 (2005), 337–352. MR 2006c :47021
Kubrusly C. S. , 'Hereditarily normaloid contractions ' (2005 ) 71 Acta Sci. Math. (Szeged) : 337 -352.
Gustafson, K. , Necessary and sufficient conditions for Weyl’s theorem, Michigan Math. J. 19 (1972), 71–81. MR 45 #4180
Gustafson K. , 'Necessary and sufficient conditions for Weyl’s theorem ' (1972 ) 19 Michigan Math. J. : 71 -81.
Harte, R. and Lee, W. Y. , Another note on Weyl’s theorem, Trans. Amer. Math. Soc. 349 (1997), 2115–2124. MR 98j :47024
Lee W. Y. , 'Another note on Weyl’s theorem ' (1997 ) 349 Trans. Amer. Math. Soc. : 2115 -2124.
Kubrusly, C. S. , Elements of Operator Theory , Birkhäuser (Boston, 2001). MR 2002c :47001
Kubrusly C. S. , '', in Elements of Operator Theory , (2001 ) -.
Kubrusly, C. S. , Hilbert Space Operators , Birkhäuser (Boston, 2003). MR 2004f :47001
Kubrusly C. S. , '', in Hilbert Space Operators , (2003 ) -.
Lee, W. Y. , Weyl’s theorem for operator matrices, Integral Equations Operator Theory 32 (1998), 319–331. MR 99g :47023
Lee W. Y. , 'Weyl’s theorem for operator matrices ' (1998 ) 32 Integral Equations Operator Theory : 319 -331.
Lee, W. Y. , Weyl spectra of operator matrices, Proc. Amer. Math. Soc. 129 , (2001), 131–138. MR 2001f :47003
Lee W. Y. , 'Weyl spectra of operator matrices ' (2001 ) 129 Proc. Amer. Math. Soc. : 131 -138.
Pearcy, C. M. , Some Recent Developments in Operator Theory , CBMS Regional Conference Series in Mathematics No. 36, Amer. Math. Soc. (Providence, 1978). MR 58 #7120
Pearcy C. M. , '', in Some Recent Developments in Operator Theory , (1978 ) -.
Schechter, M. Invariance of the essential spectrum, Bull. Amer. Math. Soc. 71 (1965), 365–367. MR 30 #5167
Schechter M. , 'Invariance of the essential spectrum ' (1965 ) 71 Bull. Amer. Math. Soc. : 365 -367.
Schechter, M. , On the essential spectrum of an arbitrary operator. I, J. Math. Anal. Appl. 13 (1966), 205–215. MR 32 #6230
Schechter M. , 'On the essential spectrum of an arbitrary operator. I ' (1966 ) 13 J. Math. Anal. Appl. : 205 -215.
Schwartz, J. , Some results on the spectra and spectral resolutions of a class of singular operators, Comm. Pure Appl. Math. 15 (1962), 75–90. MR 29 #480
Schwartz J. , 'Some results on the spectra and spectral resolutions of a class of singular operators ' (1962 ) 15 Comm. Pure Appl. Math. : 75 -90.
Weyl, H. , Über beschränkte quadratische Formem, derem Differenz vollstetig ist, Rend. Circ. Mat. Palermo 27 (1909), 373–392.
Weyl H. , 'Über beschränkte quadratische Formem, derem Differenz vollstetig ist ' (1909 ) 27 Rend. Circ. Mat. Palermo : 373 -392.