Authors: and
View More View Less
• 1 Harbin Institute of Technology Department of Mathematics Harbin China 150001
Restricted access

USD  $25.00 ### 1 year subscription (Individual Only) USD$800.00
To answer a question in [24], we propose
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{U}\mathcal{L}\mathcal{P}(\mathbb{R}^ + ,H)$$ \end{document}
, the space of uniform limit power functions and
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{L}\mathcal{P}_2$$ \end{document}
, the space of limit power functions. We show that
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{U}\mathcal{L}\mathcal{P}(\mathbb{R}^ + ,H)$$ \end{document}
and
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{L}\mathcal{P}_2$$ \end{document}
have properties respectively similar to that of
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{A}\mathcal{P}(\mathbb{R}^ + ,H)$$ \end{document}
, the space of almost periodic functions and to that of B2 , Besicovitch’s space. Finally, we point out that
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{L}\mathcal{P}_2$$ \end{document}
is the largest among those Hilbert spaces in limit power function set whose members have associated Fourier series (in the sense of a new basis) and satisfy Parseval’s equality.
• Alonso, A. I., Hong, J. and Rojo, J. , A class of ergodic solutions of of differential equations with piecewise constant argument, Dynamic System and Applications7 (1998), 561–574. MR99m :34155

Rojo J. , 'A class of ergodic solutions of of differential equations with piecewise constant argument ' (1998 ) 7 Dynamic System and Applications : 561 -574.

• Basit, B. and Zhang, C. , New almost periodic type functions and solutions of differential equations, Canadian J. Math.48(6) (1996), 1138–1153. MR98c :43010

Zhang C. , 'New almost periodic type functions and solutions of differential equations ' (1996 ) 48 Canadian J. Math. : 1138 -1153.

• Benedetto, J. J. , Harmonic Analysis and Applications , CRC Press, Boca Raton (1997). MR97m :42001

Benedetto J. J. , '', in Harmonic Analysis and Applications , (1997 ) -.

• Blahut, R. E., Miller, W., Jr. and Wilcox C. H. , Radar and Sonar, Part I , Springer-Verlag (New York, 1991).

Wilcox C. H. , '', in Radar and Sonar, Part I , (1991 ) -.

• Berglund, J. F., Junghenn, H. D. and Milnes, P. , Analysis on Semigroup: Function Spaces, Compactification, Representations , Wiley (New York, 1989). MR91b :43001

Milnes P. , '', in Analysis on Semigroup: Function Spaces, Compactification, Representations , (1989 ) -.

• Besicovitch, A. S. , Almost Periodic Functions , Dover (New York, 1954).

Besicovitch A. S. , '', in Almost Periodic Functions , (1954 ) -.

• Bochner, S. , A new approach to almost periodicity, Proc. Nat. Acad. Sci. USA48 (1962), 2039–2043. MR26 #2816

Bochner S. , 'A new approach to almost periodicity ' (1962 ) 48 Proc. Nat. Acad. Sci. USA : 2039 -2043.

• Bohr, H. , Zur Theorie der fastperiolischen Funktionnen, I-III8 Acta Math . 45 , 19–127; 46 , 101–214; 47 , 237–281 (1925–1926).

Bohr H. , 'Zur Theorie der fastperiolischen Funktionnen, I-III8 ' (1925 ) 45 Acta Math : 19 -127.

• Corduneanu, C.Almost Periodic Functions , Chelsea (New York, 1st ed., 1968, 2nd ed., 1989). MR58 #2006

Corduneanu C. , '', in Almost Periodic Functions , (1968 ) -.

• Da Prato , G. and Ichikawa, A. , Optimal control of linear systems with almost periodic inputs, SIAM J. Control Optim.25 (1987), 1007–1019. MR88i :93042

Ichikawa A. , 'Optimal control of linear systems with almost periodic inputs ' (1987 ) 25 SIAM J. Control Optim. : 1007 -1019.

• de Leeuw , K. and Glicksberg, I. , Applications of almost periodic compactifications, Acta Math . 105 (1961), 63–97. MR24 #A1032

Glicksberg I. , 'Applications of almost periodic compactifications ' (1961 ) 105 Acta Math : 63 -97.

• Doyle, J. C., Francis, B. A. and Tannenbaum, A. R. , Feedback Control Theory , MacMillan (New York, 1992). MR93k :93002

Tannenbaum A. R. , '', in Feedback Control Theory , (1992 ) -.

• Eberlein, W. F. , Abstract ergodic theorems and weak almost periodic functions, Trans. Amer. Math. Soc.69 (1949), 217–240. MR12 ,112a

Eberlein W. F. , 'Abstract ergodic theorems and weak almost periodic functions ' (1949 ) 69 Trans. Amer. Math. Soc. : 217 -240.

• Fink, A. M. Almost periodic functions invented for specific purpose, SIAM Review14(4 ) (1972), 572–581. MR50 #5353

Fink A. M. , 'Almost periodic functions invented for specific purpose ' (1972 ) 14 SIAM Review : 572 -581.

• Frid, H. , Decay of almost periodic solutions of conservation laws, Arch Rational Mech. Anal.161 (2002), 43–64. MR2003d :35176

Frid H. , 'Decay of almost periodic solutions of conservation laws ' (2002 ) 161 Arch Rational Mech. Anal. : 43 -64.

• Goodman, J. W. , Introduction to Fourier Optics , McGraw-Hill (New York, 1968).

Goodman J. W. , '', in Introduction to Fourier Optics , (1968 ) -.

• Hörmander, L. , The Analysis of Linear Partial Differential Operators, I and II , Springer-Verlag (New York, 1983). MR85g :35002a, MR85g :35002b

Hörmander L. , '', in The Analysis of Linear Partial Differential Operators, I and II , (1983 ) -.

• Hong, J. and Obaya, R. , Ergodic type solutions of some differential equations, in: Differential Equations and Nonlinear Mechanics , Kluwer Academic Publishers (2001), 135–152. MR2002b 34072

• Jacob, B., Larsen, M. and Zwart, H. , Corrections and extensions of “Optimal control of linear systems with almost periodic inputs” by G. Da Prato and A. Ichikawa, SIAM J. Control Optim.36 (1998), 1473–1480. MR99d :49064

Zwart H. , 'Corrections and extensions of “Optimal control of linear systems with almost periodic inputs” by G. Da Prato and A. Ichikawa ' (1998 ) 36 SIAM J. Control Optim. : 1473 -1480.

• Kaiser, G. , A Friendly Guide to Wavelets , Birkhäuser (Boston, 1994). MR95i :94003

Kaiser G. , '', in A Friendly Guide to Wavelets , (1994 ) -.

• Levitan, B. M. , Almost Periodic Functions , Higher Education Press, Beijing, 1956 (Chinese translation from Russian).

Levitan B. M. , '', in Almost Periodic Functions , (1956 ) -.

• Mäkilä, P. M. , On three puzzles in robust control, IEEE Trans. Automat. Control45 (2000), 552–555. MR2001e :93027

Mäkilä P. M. , 'On three puzzles in robust control ' (2000 ) 45 IEEE Trans. Automat. Control : 552 -555.

• Mäkilä, P. M., Partington, J. R. and Norlander, T. , Bounded power signal spaces for robust control and modelling, SIAM J. Control Optimiz.37 (1999), 92–117. MR99f :93047

Norlander T. , 'Bounded power signal spaces for robust control and modelling ' (1999 ) 37 SIAM J. Control Optimiz. : 92 -117.

• Mari, J. , A counterexample in power signal space, IEEE Trans. Automat. Control41 (1996), 115–116. MR96i :93004

Mari J. , 'A counterexample in power signal space ' (1996 ) 41 IEEE Trans. Automat. Control : 115 -116.

• Partington, J. R. and Ünalmis, B. On the windowed Fourier transform and wavelet transform of almost periodic functions, Applied and Computational Harmonic Analysis10 (2001), 45–60. MRMR 2002c:42056

Ünalmis B. , 'On the windowed Fourier transform and wavelet transform of almost periodic functions ' (2001 ) 10 Applied and Computational Harmonic Analysis : 45 -60.

• Rihaczek, A. W. , Principle of High-resolution Radar , Peninsula Publishing (Los Altos, CA, 1985).

Rihaczek A. W. , '', in Principle of High-resolution Radar , (1985 ) -.

• Rudin, W. , Weak almost periodic functions and Fourier Stieltjes transforms, Duke Math. J.26 (1959), 215–220. MR21 #1492

Rudin W. , 'Weak almost periodic functions and Fourier Stieltjes transforms ' (1959 ) 26 Duke Math. J. : 215 -220.

• Ruess, W. M. and Summers, W. H. , Ergodic theorems for semigroups of operators, Proc. Amer. Math. Soc.114 (1992), 423–432. MR92e :47016

Summers W. H. , 'Ergodic theorems for semigroups of operators ' (1992 ) 114 Proc. Amer. Math. Soc. : 423 -432.

• Sarason, D. , Toeplitz operators with semi-almost periodic symbols, Duke Math. J.44 (1977), 357–364. MR56 #12965

Sarason D. , 'Toeplitz operators with semi-almost periodic symbols ' (1977 ) 44 Duke Math. J. : 357 -364.

• Stein, E. M. , Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals , with the assistance of T. S. Murphy, Princeton University Press (Princeton, NJ, 1993). MR95c :42002

Stein E. M. , '', in Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals , (1993 ) -.

• Wiener, N. , The Fourier Integral and Certain of its Applications , Cambridge Univ. Press (Cambridge, 1933). MR20 #6634

Wiener N. , '', in The Fourier Integral and Certain of its Applications , (1933 ) -.

• Zaidman, S. , Almost Periodic Functions in Abstract Spaces , Pitman (Boston, 1985). MR86j :42018

Zaidman S. , '', in Almost Periodic Functions in Abstract Spaces , (1985 ) -.

• Zhang, C. , Almost Periodic Type Functions and Ergodicity , Science Press/Kluwer (Boston, Dordrecht, London, Beijing, New York, 2003). MR2004k :34087

Zhang C. , '', in Almost Periodic Type Functions and Ergodicity , (2003 ) -.

• Zhou, K., Doyle, J. C. and Glover, K. , Robust and Optimal Control , Englewood Cliffs (NJ, Prentice-Hall, 1996)

Glover K. , '', in Robust and Optimal Control , (1996 ) -.

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics)

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

• Imre BÁRÁNY (Rényi Institute of Mathematics)
• Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
• Péter CSIKVÁRI (ELTE, Budapest)
• Joshua GREENE (Boston College)
• Penny HAXELL (University of Waterloo)
• Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
• Ron HOLZMAN (Technion, Haifa)
• Satoru IWATA (University of Tokyo)
• Tibor JORDÁN (ELTE, Budapest)
• Roy MESHULAM (Technion, Haifa)
• Frédéric MEUNIER (École des Ponts ParisTech)
• Márton NASZÓDI (ELTE, Budapest)
• Eran NEVO (Hebrew University of Jerusalem)
• János PACH (Rényi Institute of Mathematics)
• Péter Pál PACH (BME, Budapest)
• Andrew SUK (University of California, San Diego)
• Zoltán SZABÓ (Princeton University)
• Martin TANCER (Charles University, Prague)
• Gábor TARDOS (Rényi Institute of Mathematics)
• Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

• CompuMath Citation Index
• Essential Science Indicators
• Mathematical Reviews
• Science Citation Index Expanded (SciSearch)
• SCOPUS
• Zentralblatt MATH
 2020 Total Cites 536 WoS Journal Impact Factor 0,855 Rank by Mathematics 189/330 (Q3) Impact Factor Impact Factor 0,826 without Journal Self Cites 5 Year 1,703 Impact Factor Journal 0,68 Citation Indicator Rank by Journal Mathematics 230/470 (Q2) Citation Indicator Citable 32 Items Total 32 Articles Total 0 Reviews Scimago 24 H-index Scimago 0,307 Journal Rank Scimago Mathematics (miscellaneous) Q3 Quartile Score Scopus 139/130=1,1 Scite Score Scopus General Mathematics 204/378 (Q3) Scite Score Rank Scopus 1,069 SNIP Days from 85 submission to acceptance Days from 123 acceptance to publication Acceptance 16% Rate

2019
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2022

Online subsscription: 688 EUR / 860 USD
Print + online subscription: 776 EUR / 970 USD

Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder's
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher's
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)