# Two new spaces of vector-valued limit power functions

Authors:
Chuanyi Zhang Harbin Institute of Technology Department of Mathematics Harbin China 150001

Search for other papers by Chuanyi Zhang in
Current site
PubMed
Close
and
Chenhui Meng Harbin Institute of Technology Department of Mathematics Harbin China 150001

Search for other papers by Chenhui Meng in
Current site
PubMed
Close
Restricted access
To answer a question in [24], we propose
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{U}\mathcal{L}\mathcal{P}(\mathbb{R}^ + ,H)$$ \end{document}
, the space of uniform limit power functions and
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{L}\mathcal{P}_2$$ \end{document}
, the space of limit power functions. We show that
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{U}\mathcal{L}\mathcal{P}(\mathbb{R}^ + ,H)$$ \end{document}
and
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{L}\mathcal{P}_2$$ \end{document}
have properties respectively similar to that of
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{A}\mathcal{P}(\mathbb{R}^ + ,H)$$ \end{document}
, the space of almost periodic functions and to that of B2 , Besicovitch’s space. Finally, we point out that
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{L}\mathcal{P}_2$$ \end{document}
is the largest among those Hilbert spaces in limit power function set whose members have associated Fourier series (in the sense of a new basis) and satisfy Parseval’s equality.
• Collapse
• Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics)

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

• Imre BÁRÁNY (Rényi Institute of Mathematics)
• Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
• Péter CSIKVÁRI (ELTE, Budapest)
• Joshua GREENE (Boston College)
• Penny HAXELL (University of Waterloo)
• Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
• Ron HOLZMAN (Technion, Haifa)
• Satoru IWATA (University of Tokyo)
• Tibor JORDÁN (ELTE, Budapest)
• Roy MESHULAM (Technion, Haifa)
• Frédéric MEUNIER (École des Ponts ParisTech)
• Márton NASZÓDI (ELTE, Budapest)
• Eran NEVO (Hebrew University of Jerusalem)
• János PACH (Rényi Institute of Mathematics)
• Péter Pál PACH (BME, Budapest)
• Andrew SUK (University of California, San Diego)
• Zoltán SZABÓ (Princeton University)
• Martin TANCER (Charles University, Prague)
• Gábor TARDOS (Rényi Institute of Mathematics)
• Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

• CABELLS Journalytics
• CompuMath Citation Index
• Essential Science Indicators
• Mathematical Reviews
• Science Citation Index Expanded (SciSearch)
• SCOPUS
• Zentralblatt MATH

2022
Web of Science
Total Cites
WoS
570
Journal Impact Factor 0.7
Rank by Impact Factor

Mathematics (Q3)

Impact Factor
without
Journal Self Cites
0.7
5 Year
Impact Factor
0.8
Journal Citation Indicator 0.65
Rank by Journal Citation Indicator

Mathematics (Q2)

Scimago
Scimago
H-index
26
Scimago
Journal Rank
0.351
Scimago Quartile Score

Mathematics (Q3)

Scopus
Scopus
Cite Score
1.8
Scopus
CIte Score Rank
General Mathematics 128/387 (67th PCTL)
Scopus
SNIP
1.276

2021
Web of Science
Total Cites
WoS
589
Journal Impact Factor 0,739
Rank by Impact Factor Mathematics 229/332
Impact Factor
without
Journal Self Cites
0,710
5 Year
Impact Factor
0,654
Journal Citation Indicator 0,57
Rank by Journal Citation Indicator Mathematics 287/474
Scimago
Scimago
H-index
26
Scimago
Journal Rank
0,265
Scimago Quartile Score Mathematics (miscellaneous) (Q3)
Scopus
Scopus
Cite Score
1,3
Scopus
CIte Score Rank
General Mathematics 193/391 (Q2)
Scopus
SNIP
0,746

 2020 Total Cites 536 WoS Journal Impact Factor 0,855 Rank by Mathematics 189/330 (Q3) Impact Factor Impact Factor 0,826 without Journal Self Cites 5 Year 1,703 Impact Factor Journal 0,68 Citation Indicator Rank by Journal Mathematics 230/470 (Q2) Citation Indicator Citable 32 Items Total 32 Articles Total 0 Reviews Scimago 24 H-index Scimago 0,307 Journal Rank Scimago Mathematics (miscellaneous) Q3 Quartile Score Scopus 139/130=1,1 Scite Score Scopus General Mathematics 204/378 (Q3) Scite Score Rank Scopus 1,069 SNIP Days from 85 submission to acceptance Days from 123 acceptance to publication Acceptance 16% Rate

2019
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2023 Online subsscription: 708 EUR / 860 USD
Print + online subscription: 796 EUR / 970 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder's
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher's
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)

Apr 2023 2 0 0
May 2023 0 0 0
Jun 2023 2 0 0
Jul 2023 1 0 0
Aug 2023 3 0 0
Sep 2023 3 0 0
Oct 2023 0 0 0

Author:

Author:

Author:

Author:

Authors: and

Authors: , , and

Authors: and

Authors: and

Authors: and