View More View Less
  • 1 Uppsala University Department of Mathematics PO Box 480 S-751 06 Uppsala Sweden
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

It has been known for a long time that the height and width of a random labelled rooted tree, or of any other conditioned Galton-Watson tree, after suitable normalizations converge to the same limit distribution. Moreover, Chassaing, Marckert and Yor [7] have proved joint convergence of height and width. The resulting two-dimensional limit distribution has been studied by Donati-Martin [10]. We extend her results and give new formulas for joint moments. As an example, we calculate the covariance. We also show that the two-dimensional distribution is not symmetric, although the marginals are the same.

  • Aldous, D. , The continuum random tree II: an overview, Stochastic Analysis (Proc., Durham, 1990) , 23–70, London Math. Soc. Lecture Note Ser. 167, Cambridge Univ. Press, Cambridge, 1991. MR93f :60010

    Aldous D. , '', in Stochastic Analysis (Proc., Durham, 1990) , (1991 ) -.

  • Aldous, D. , The continuum random tree III, Ann. Probab. , 21:1 (1993), 248–289. MR94c :60015

    Aldous D. , 'The continuum random tree III ' (1993 ) 21 Ann. Probab. : 248 -289.

  • Aldous, D. , Brownian excursion conditioned on its local time, Electron. Comm. Probab. , 3 (1998), 79–90. MR99m :60115

    Aldous D. , 'Brownian excursion conditioned on its local time ' (1998 ) 3 Electron. Comm. Probab. : 79 -90.

    • Search Google Scholar
  • Biane, P., Pitman, J. and Yor, M. , Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions, Bull. Amer. Math. Soc. (N.S.) , 38:4 (2001), 435–465. MR2003b :11083

    Yor M. , 'Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions ' (2001 ) 38 Bull. Amer. Math. Soc. (N.S.) : 435 -465.

    • Search Google Scholar
  • Biane, P. and Yor, M. , Valeurs principales associées aux temps locaux browniens, Bull. Sci. Math. (2), 111:1 (1987), 23–101. MR88g :60188

    Yor M. , 'Valeurs principales associées aux temps locaux browniens ' (1987 ) 111 Bull. Sci. Math. : 23 -101.

    • Search Google Scholar
  • Chassaing, P. and Marckert, J.-F. , Parking functions, empirical processes, and the width of rooted labeled trees, Electron. J. Combin. , 8:1 (2001), Research Paper 14, 19 pp. MR2002b :05037

  • Chassaing, P., Marckert, J.-F. and Yor, M. , The height and width of simple trees, Mathematics and Computer Science (Versailles, 2000) , 17–30, Trends Math., Birkhäuser, Basel, 2000. MR2001j :68095

    Yor M. , '', in Mathematics and Computer Science (Versailles, 2000) , (2000 ) -.

  • Chung, K. L. , Excursions in Brownian motion, Ark. Mat. , 14:2 (1976), 155–177. MR57 //7791

    Chung K. L. , 'Excursions in Brownian motion ' (1976 ) 14 Ark. Mat. : 155 -177.

  • Devroye, L. , Branching processes and their applications in the analysis of tree structures and tree algorithms, Probabilistic methods for algorithmic discrete mathematics , 249–314, eds. M. Habib et al., Algorithms Combin. 16, Springer-Verlag, Berlin, 1998. MR2000m :60099

    Devroye L. , '', in Probabilistic methods for algorithmic discrete mathematics , (1998 ) -.

  • Donati-Martin, C. , Some remarks about the identity in law for the Bessel bridge \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\int_0^1 {\tfrac{{ds}}{{r(s)}}\mathop = \limits^{(law)} 2\sup _{s \leqq 1} r(s)}$$ \end{document}, Studia Sci. Math. Hungar. , 37:1–2 (2001), 131–144. MR2002j :60141

    Donati-Martin C. , 'Some remarks about the identity in law for the Bessel bridge % MathType!MTEF!2!1!+-% feaagaart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC% vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz% ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbb% L8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpe% pae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabeqaam% aaeaqbaaGcbaWaa8qmaeaadaWcbaWcbaGaemizaqMaem4CamhabaGa% emOCaiNaeiikaGIaem4CamNaeiykaKcaaOWaaCbiaeaacqGH9aqpaS% qabeaacWaGacaa0cGGOaakiqaacGaGacaa0cWFSbGaiaiGaaaTa8xy% aiacaciaaqla-DhacWaGacaa0cGGPaqkaaGccqaIYaGmcyGGZbWCcq% GG1bqDcqGGWbaCdaWgaaWcbaGaem4Cam3efv3ySLgznfgDOjdarCqr% 1ngBPrginfgDObcv39gaiyaacqGFMjIHcqaIXaqmaeqaaOGaemOCai% NaeiikaGIaem4CamNaeiykaKcaleaacqaIWaamaeaacqaIXaqma0Ga% ey4kIipaaaa!6C66!\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\int_0^1 {\tfrac{{ds}}{{r(s)}}\mathop = \limits^{(law)} 2\sup _{s \leqq 1} r(s)}$$ \end{document} ' (2001 ) 37 Studia Sci. Math. Hungar. : 131 -144.

    • Search Google Scholar
  • Drmota, M. and Gittenberger, B. , On the profile of random trees, Random Struct. Alg. , 10:4 (1997), 421–451. MR99c :05176

    Gittenberger B. , 'On the profile of random trees ' (1997 ) 10 Random Struct. Alg. : 421 -451.

    • Search Google Scholar
  • Drmota, M. , and Gittenberger, B. , The width of Galton-Watson trees conditioned by the size, Discr. Math. Theor. Comput. Sci. , 6:2 (2004), 387–400. MR2005f :60180

    Gittenberger B. , 'The width of Galton-Watson trees conditioned by the size ' (2004 ) 6 Discr. Math. Theor. Comput. Sci. : 387 -400.

    • Search Google Scholar
  • Flajolet, P., Gao, Z., Odlyzko, A. and Richmond, B. , The distribution of heights of binary trees and other simple trees, Combin. Probab. Comput. , 2 (1993), 145–156. MR94k :05061

    Richmond B. , 'The distribution of heights of binary trees and other simple trees ' (1993 ) 2 Combin. Probab. Comput. : 145 -156.

    • Search Google Scholar
  • Graham, R. L., Knuth, D. E. and Patashnik, O., Concrete Mathematics , 2nd ed., Addison-Wesley, Reading, Mass (1994). MR97d :68003

    Patashnik O. , '', in Concrete Mathematics , (1994 ) -.

  • Janson, S. , Random cutting and records in deterministic and random trees, Random Struct. Alg. , 29:2 (2006), 139–179. MR2007k :05200

    Janson S. , 'Random cutting and records in deterministic and random trees ' (2006 ) 29 Random Struct. Alg. : 139 -179.

    • Search Google Scholar
  • Jeulin, T. , Semi-martingales et grossissement d’une filtration , Lecture Notes in Mathematics 833, Springer-Verlag, Berlin, 1980. MR82h :60106

    Jeulin T. , '', in Semi-martingales et grossissement d’une filtration , (1980 ) -.

  • Kennedy, D. P. , The distribution of the maximum Brownian excursion, J. Appl. Probab. , 13:2 (1976), 371–376. MR53 //6769

    Kennedy D. P. , 'The distribution of the maximum Brownian excursion ' (1976 ) 13 J. Appl. Probab. : 371 -376.

    • Search Google Scholar
  • Louchard, G. , Kac’s formula, Lévy’s local time and Brownian excursion, J. Appl. Probab. , 21:3 (1984), 479–499. MR86f :60100

    Louchard G. , 'Kac’s formula, Lévy’s local time and Brownian excursion ' (1984 ) 21 J. Appl. Probab. : 479 -499.

    • Search Google Scholar
  • Meir, A. and Moon, J. W. , On the altitude of nodes in random trees, Canad. J. Math. , 30 (1978), 997–1015. MR80k :05043

    Moon J. W. , 'On the altitude of nodes in random trees ' (1978 ) 30 Canad. J. Math. : 997 -1015.

    • Search Google Scholar
  • Pitman, J. and Yor, M. , Decomposition at the maximum for excursions and bridges of one-dimensional diffusions, Itô’s stochastic calculus and probability theory , 293–310, Springer, Tokyo, 1996. MR98f :60153

    Yor M. , '', in Itô’s stochastic calculus and probability theory , (1996 ) -.

  • Rényi, A. and Szekeres, G. , On the height of trees, J. Austral. Math. Soc. , 7 (1967), 497–507. MR36 //2522

    Szekeres G. , 'On the height of trees ' (1967 ) 7 J. Austral. Math. Soc. : 497 -507.

  • Szpankowski, W. , Average Case Analysis of Algorithms on Sequences , Wiley, New York, 2001. MR2002f :68001

    Szpankowski W. , '', in Average Case Analysis of Algorithms on Sequences , (2001 ) -.

  • Takács, L. , Limit distributions for queues and random rooted trees, J. Appl. Math. Stochastic Anal. , 6:3 (1993), 189–216. MR94m :60194

    Takács L. , 'Limit distributions for queues and random rooted trees ' (1993 ) 6 J. Appl. Math. Stochastic Anal. : 189 -216.

    • Search Google Scholar
  • Yor, M. , Some aspects of Brownian motion. Part II: Some recent martingale problems . Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1997. MR98e :60140

    Yor M. , '', in Some aspects of Brownian motion. Part II: Some recent martingale problems , (1997 ) -.

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
sumbission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Subscription fee 2022

Online subsscription: 688 EUR / 860 USD
Print + online subscription: 776 EUR / 970 USD

Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)