View More View Less
  • 1 Uppsala University Department of Mathematics PO Box 480 S-751 06 Uppsala Sweden
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

It has been known for a long time that the height and width of a random labelled rooted tree, or of any other conditioned Galton-Watson tree, after suitable normalizations converge to the same limit distribution. Moreover, Chassaing, Marckert and Yor [7] have proved joint convergence of height and width. The resulting two-dimensional limit distribution has been studied by Donati-Martin [10]. We extend her results and give new formulas for joint moments. As an example, we calculate the covariance. We also show that the two-dimensional distribution is not symmetric, although the marginals are the same.

  • Aldous, D. , The continuum random tree II: an overview, Stochastic Analysis (Proc., Durham, 1990) , 23–70, London Math. Soc. Lecture Note Ser. 167, Cambridge Univ. Press, Cambridge, 1991. MR93f :60010

    Aldous D. , '', in Stochastic Analysis (Proc., Durham, 1990) , (1991 ) -.

  • Aldous, D. , The continuum random tree III, Ann. Probab. , 21:1 (1993), 248–289. MR94c :60015

    Aldous D. , 'The continuum random tree III ' (1993 ) 21 Ann. Probab. : 248 -289.

  • Aldous, D. , Brownian excursion conditioned on its local time, Electron. Comm. Probab. , 3 (1998), 79–90. MR99m :60115

    Aldous D. , 'Brownian excursion conditioned on its local time ' (1998 ) 3 Electron. Comm. Probab. : 79 -90.

    • Search Google Scholar
  • Biane, P., Pitman, J. and Yor, M. , Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions, Bull. Amer. Math. Soc. (N.S.) , 38:4 (2001), 435–465. MR2003b :11083

    Yor M. , 'Probability laws related to the Jacobi theta and Riemann zeta functions, and Brownian excursions ' (2001 ) 38 Bull. Amer. Math. Soc. (N.S.) : 435 -465.

    • Search Google Scholar
  • Biane, P. and Yor, M. , Valeurs principales associées aux temps locaux browniens, Bull. Sci. Math. (2), 111:1 (1987), 23–101. MR88g :60188

    Yor M. , 'Valeurs principales associées aux temps locaux browniens ' (1987 ) 111 Bull. Sci. Math. : 23 -101.

    • Search Google Scholar
  • Chassaing, P. and Marckert, J.-F. , Parking functions, empirical processes, and the width of rooted labeled trees, Electron. J. Combin. , 8:1 (2001), Research Paper 14, 19 pp. MR2002b :05037

  • Chassaing, P., Marckert, J.-F. and Yor, M. , The height and width of simple trees, Mathematics and Computer Science (Versailles, 2000) , 17–30, Trends Math., Birkhäuser, Basel, 2000. MR2001j :68095

    Yor M. , '', in Mathematics and Computer Science (Versailles, 2000) , (2000 ) -.

  • Chung, K. L. , Excursions in Brownian motion, Ark. Mat. , 14:2 (1976), 155–177. MR57 //7791

    Chung K. L. , 'Excursions in Brownian motion ' (1976 ) 14 Ark. Mat. : 155 -177.

  • Devroye, L. , Branching processes and their applications in the analysis of tree structures and tree algorithms, Probabilistic methods for algorithmic discrete mathematics , 249–314, eds. M. Habib et al., Algorithms Combin. 16, Springer-Verlag, Berlin, 1998. MR2000m :60099

    Devroye L. , '', in Probabilistic methods for algorithmic discrete mathematics , (1998 ) -.

  • Donati-Martin, C. , Some remarks about the identity in law for the Bessel bridge \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\int_0^1 {\tfrac{{ds}}{{r(s)}}\mathop = \limits^{(law)} 2\sup _{s \leqq 1} r(s)}$$ \end{document}, Studia Sci. Math. Hungar. , 37:1–2 (2001), 131–144. MR2002j :60141

    Donati-Martin C. , 'Some remarks about the identity in law for the Bessel bridge % MathType!MTEF!2!1!+-% feaagaart1ev2aaatCvAUfKttLearuqr1ngBPrgarmWu51MyVXgatC% vAUfeBSjuyZL2yd9gzLbvyNv2CaeHbd9wDYLwzYbItLDharyavP1wz% ZbItLDhis9wBH5garqqtubsr4rNCHbGeaGqiVu0Je9sqqrpepC0xbb% L8F4rqqrFfpeea0xe9Lq-Jc9vqaqpepm0xbba9pwe9Q8fs0-yqaqpe% pae9pg0FirpepeKkFr0xfr-xfr-xb9adbaqaaeGaciGaaiaabeqaam% aaeaqbaaGcbaWaa8qmaeaadaWcbaWcbaGaemizaqMaem4CamhabaGa% emOCaiNaeiikaGIaem4CamNaeiykaKcaaOWaaCbiaeaacqGH9aqpaS% qabeaacWaGacaa0cGGOaakiqaacGaGacaa0cWFSbGaiaiGaaaTa8xy% aiacaciaaqla-DhacWaGacaa0cGGPaqkaaGccqaIYaGmcyGGZbWCcq% GG1bqDcqGGWbaCdaWgaaWcbaGaem4Cam3efv3ySLgznfgDOjdarCqr% 1ngBPrginfgDObcv39gaiyaacqGFMjIHcqaIXaqmaeqaaOGaemOCai% NaeiikaGIaem4CamNaeiykaKcaleaacqaIWaamaeaacqaIXaqma0Ga% ey4kIipaaaa!6C66!\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\int_0^1 {\tfrac{{ds}}{{r(s)}}\mathop = \limits^{(law)} 2\sup _{s \leqq 1} r(s)}$$ \end{document} ' (2001 ) 37 Studia Sci. Math. Hungar. : 131 -144.

    • Search Google Scholar
  • Drmota, M. and Gittenberger, B. , On the profile of random trees, Random Struct. Alg. , 10:4 (1997), 421–451. MR99c :05176

    Gittenberger B. , 'On the profile of random trees ' (1997 ) 10 Random Struct. Alg. : 421 -451.

    • Search Google Scholar
  • Drmota, M. , and Gittenberger, B. , The width of Galton-Watson trees conditioned by the size, Discr. Math. Theor. Comput. Sci. , 6:2 (2004), 387–400. MR2005f :60180

    Gittenberger B. , 'The width of Galton-Watson trees conditioned by the size ' (2004 ) 6 Discr. Math. Theor. Comput. Sci. : 387 -400.

    • Search Google Scholar
  • Flajolet, P., Gao, Z., Odlyzko, A. and Richmond, B. , The distribution of heights of binary trees and other simple trees, Combin. Probab. Comput. , 2 (1993), 145–156. MR94k :05061

    Richmond B. , 'The distribution of heights of binary trees and other simple trees ' (1993 ) 2 Combin. Probab. Comput. : 145 -156.

    • Search Google Scholar
  • Graham, R. L., Knuth, D. E. and Patashnik, O., Concrete Mathematics , 2nd ed., Addison-Wesley, Reading, Mass (1994). MR97d :68003

    Patashnik O. , '', in Concrete Mathematics , (1994 ) -.

  • Janson, S. , Random cutting and records in deterministic and random trees, Random Struct. Alg. , 29:2 (2006), 139–179. MR2007k :05200

    Janson S. , 'Random cutting and records in deterministic and random trees ' (2006 ) 29 Random Struct. Alg. : 139 -179.

    • Search Google Scholar
  • Jeulin, T. , Semi-martingales et grossissement d’une filtration , Lecture Notes in Mathematics 833, Springer-Verlag, Berlin, 1980. MR82h :60106

    Jeulin T. , '', in Semi-martingales et grossissement d’une filtration , (1980 ) -.

  • Kennedy, D. P. , The distribution of the maximum Brownian excursion, J. Appl. Probab. , 13:2 (1976), 371–376. MR53 //6769

    Kennedy D. P. , 'The distribution of the maximum Brownian excursion ' (1976 ) 13 J. Appl. Probab. : 371 -376.

    • Search Google Scholar
  • Louchard, G. , Kac’s formula, Lévy’s local time and Brownian excursion, J. Appl. Probab. , 21:3 (1984), 479–499. MR86f :60100

    Louchard G. , 'Kac’s formula, Lévy’s local time and Brownian excursion ' (1984 ) 21 J. Appl. Probab. : 479 -499.

    • Search Google Scholar
  • Meir, A. and Moon, J. W. , On the altitude of nodes in random trees, Canad. J. Math. , 30 (1978), 997–1015. MR80k :05043

    Moon J. W. , 'On the altitude of nodes in random trees ' (1978 ) 30 Canad. J. Math. : 997 -1015.

    • Search Google Scholar
  • Pitman, J. and Yor, M. , Decomposition at the maximum for excursions and bridges of one-dimensional diffusions, Itô’s stochastic calculus and probability theory , 293–310, Springer, Tokyo, 1996. MR98f :60153

    Yor M. , '', in Itô’s stochastic calculus and probability theory , (1996 ) -.

  • Rényi, A. and Szekeres, G. , On the height of trees, J. Austral. Math. Soc. , 7 (1967), 497–507. MR36 //2522

    Szekeres G. , 'On the height of trees ' (1967 ) 7 J. Austral. Math. Soc. : 497 -507.

  • Szpankowski, W. , Average Case Analysis of Algorithms on Sequences , Wiley, New York, 2001. MR2002f :68001

    Szpankowski W. , '', in Average Case Analysis of Algorithms on Sequences , (2001 ) -.

  • Takács, L. , Limit distributions for queues and random rooted trees, J. Appl. Math. Stochastic Anal. , 6:3 (1993), 189–216. MR94m :60194

    Takács L. , 'Limit distributions for queues and random rooted trees ' (1993 ) 6 J. Appl. Math. Stochastic Anal. : 189 -216.

    • Search Google Scholar
  • Yor, M. , Some aspects of Brownian motion. Part II: Some recent martingale problems . Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 1997. MR98e :60140

    Yor M. , '', in Some aspects of Brownian motion. Part II: Some recent martingale problems , (1997 ) -.