View More View Less
  • 1 Shahrood University of Thechnology Department of Mathematics Shahrood Iran P.O.Box: 316-3619995161
  • | 2 University of Tarbiat Modarres Department of Mathematics P.O.Box 14115-170 Tehran Iran
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

A ring R is called right principally quasi-Baer (or simply right p.q.-Baer ) if the right annihilator of a principal right ideal of R is generated by an idempotent. Let R be a ring such that all left semicentral idempotents are central. Let α be an endomorphism of R which is not assumed to be surjective and R be α -compatible. It is shown that the skew power series ring R [[ x; α ]] is right p.q.-Baer if and only if the skew Laurent power series ring R [[ x, x −1 ; α ]] is right p.q.-Baer if and only if R is right p.q.-Baer and any countable family of idempotents in R has a generalized join in I ( R ). An example showing that the α -compatible condition on R is not superfluous, is provided.

  • Hashemi, E. and Moussavi, A. , Skew power series extentions of α -rigid p.p.-rings, Bull. Korean Math. Soc. , 41(4) (2004), 657–665. MR2005k :16059

    Moussavi A. , 'Skew power series extentions of α-rigid p.p.-rings ' (2004 ) 41 Bull. Korean Math. Soc. : 657 -665.

    • Search Google Scholar
  • Hirano, Y. , On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra , 168 (2002), 45–52. MR2003a :16038

    Hirano Y. , 'On annihilator ideals of a polynomial ring over a noncommutative ring ' (2002 ) 168 J. Pure Appl. Algebra : 45 -52.

    • Search Google Scholar
  • Hong, C. Y., Kim, N. K. and Kwak, T. K. , Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra , 151 (2000), 215–226. MR2001f :16054

    Kwak T. K. , 'Ore extensions of Baer and p.p.-rings ' (2000 ) 151 J. Pure Appl. Algebra : 215 -226.

    • Search Google Scholar
  • Jordan, D. A. , Bijective extension of injective ring endomorphisms, J. London Math. Soc. , 35(2) (1982), 435–488. MR83j :16002

    Jordan D. A. , 'Bijective extension of injective ring endomorphisms ' (1982 ) 35 J. London Math. Soc. : 435 -488.

    • Search Google Scholar
  • Kaplansky, I. , Rings of Operators , Benjamin, New York, 1968. MR39 //6092

    Kaplansky I. , '', in Rings of Operators , (1968 ) -.

  • Birkenmeier, G. F., Kim, J. Y. and Park, J. K. , On polynomial extensions of principally quasi-Baer rings, Kyungpook Math. J. , 40 (2000), 247–253. MR2002a :16038a

    Park J. K. , 'On polynomial extensions of principally quasi-Baer rings ' (2000 ) 40 Kyungpook Math. J. : 247 -253.

    • Search Google Scholar
  • Birkenmeier, G. F., Kim, J. Y. and Park, J. K. , Principally quasi-Baer rings, Comm. Algebra , 29(2) (2001), 639–660. MR2002f :16076

    Park J. K. , 'Principally quasi-Baer rings ' (2001 ) 29 Comm. Algebra : 639 -660.

  • Birkenmeier, G. F., Kim, J. Y. and Park, J. K. , Polynomial extensions of Baer and quasi-Baer rings, J. Pure Appl. Algebra , 159 (2001), 24–42. MR2002a :16038b

    Park J. K. , 'Polynomial extensions of Baer and quasi-Baer rings ' (2001 ) 159 J. Pure Appl. Algebra : 24 -42.

    • Search Google Scholar
  • Birkenmeier, G. F., Kim, J. Y. and Park, J. K. , On quasi-Baer rings, Contemp. Math. , 259 (2000), 67–92. MR2002g :16023

    Park J. K. , 'On quasi-Baer rings ' (2000 ) 259 Contemp. Math. : 67 -92.

  • Clark, W. E. , Twisted matrix units semigroup algebras, Duke Math. J. , 34 (1967), 417–423. MR35 //5475

    Clark W. E. , 'Twisted matrix units semigroup algebras ' (1967 ) 34 Duke Math. J. : 417 -423.

  • Chatters, A. W. and Hajarnavis, C. R. , Rings with chain conditions , Pitman: Boston, 1980. MR82k :16020

    Hajarnavis C. R. , '', in Rings with chain conditions , (1980 ) -.

  • Fraser, J. A. and Nicholson, W. K. , Reduced PP-rings, Math. Japonica , 34(5) (1989), 715–725. MR90m :16032

    Nicholson W. K. , 'Reduced PP-rings ' (1989 ) 34 Math. Japonica : 715 -725.

  • Hashemi, E. and Moussavi, A. , Polynomial extensions of quasi-Baer rings, Acta Math. Hungar. , 107(3) (2005), 207–224. MR2006c :16048

    Moussavi A. , 'Polynomial extensions of quasi-Baer rings ' (2005 ) 107 Acta Math. Hungar. : 207 -224.

    • Search Google Scholar
  • Hashemi, E., Moussavi, A. and Javadi, H. S. , Polynomial Ore extentions of Baer and p.p.-rings, Bull. Iranian Math. Soc. , 29(2) (2003), 65–84. MR2006g :16062

    Javadi H. S. , 'Polynomial Ore extentions of Baer and p.p.-rings ' (2003 ) 29 Bull. Iranian Math. Soc. : 65 -84.

    • Search Google Scholar
  • Rege, M. B. and Chhawchharia, S. , Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. , 73 (1997), 14–17. MR 1442245

    Chhawchharia S. , 'Armendariz rings ' (1997 ) 73 Proc. Japan Acad. Ser. A Math. Sci. : 14 -17.

    • Search Google Scholar
  • Stenstrom, B. , Rings of Quotients , Springer, Berlin, 1975. MR52 //10782

    Stenstrom B. , '', in Rings of Quotients , (1975 ) -.

  • Tominaga, H. , On s -unital rings, Math. J. Okayama Univ. , 18 (1976), 117–134. MR54 //7532

    Tominaga H. , 'On s-unital rings ' (1976 ) 18 Math. J. Okayama Univ. : 117 -134.

  • Kim, N. H. and Lee, Y. , Armendariz rings and reduced rings, J. Algebra , 223 (2000), 477–488. MR2001h :16035

    Lee Y. , 'Armendariz rings and reduced rings ' (2000 ) 223 J. Algebra : 477 -488.

  • Krempa, J. , Some examples of reduced rings, Algebra Colloq. , 3(4) (1996), 289–300. MR98e :16027

    Krempa J. , 'Some examples of reduced rings ' (1996 ) 3 Algebra Colloq. : 289 -300.

  • Liu, Z. , A note on principally quasi-Baer rings, Comm. Algebra , 30(8) (2002), 3885–3890. MR2003h :16076

    Liu Z. , 'A note on principally quasi-Baer rings ' (2002 ) 30 Comm. Algebra : 3885 -3890.

  • Moussavi, A., Javadi, H. S. and Hashemi, E. , Generalized quasi-Baer rings, Comm. Algebra , 33 (2005), 2115–2129. MR2006c :16040

    Hashemi E. , 'Generalized quasi-Baer rings ' (2005 ) 33 Comm. Algebra : 2115 -2129.

  • Moussavi, A. and Hashemi, E. , Semiprime skew polynomial rings, Scientiae Mathematicae Japonicae , 64 (2006), 91–95. MR 2242345

    Hashemi E. , 'Semiprime skew polynomial rings ' (2006 ) 64 Scientiae Mathematicae Japonicae : 91 -95.

    • Search Google Scholar
  • Annin, S. , Associated primes over skew polynomials rings, Comm. Algebra , 30 (2002), 2511–2528. MR2003c :16039

    Annin S. , 'Associated primes over skew polynomials rings ' (2002 ) 30 Comm. Algebra : 2511 -2528.

    • Search Google Scholar
  • Armendariz, E. P. , A note on extensions of Baer and p.p.-rings, J. Austral. Math. Soc. , 18 (1974), 470–473. MR51 //3224

    Armendariz E. P. , 'A note on extensions of Baer and p.p.-rings ' (1974 ) 18 J. Austral. Math. Soc. : 470 -473.

    • Search Google Scholar
  • Birkenmeier, G. F. , Idempotents and completely semiprime ideals, Comm. Algebra , 11 (1983), 567–580. MR84d :16017

    Birkenmeier G. F. , 'Idempotents and completely semiprime ideals ' (1983 ) 11 Comm. Algebra : 567 -580.

    • Search Google Scholar

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
sumbission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription Information Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)