View More View Less
  • 1 Technical University of Varna Department of Mathematics 9010 Varna Bulgaria
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

In this paper the Stampacchia variational inequality, the Minty variational inequality, and the respective nonlinear programming problem are investigated in terms of the lower Dini directional derivative. We answer the questions which are the largest classes of functions such that the solution sets of each pair of these problems coincide.

  • Crespi, G., Ginchev, I. and Rocca, M. , Minty variational inequalities, increase-along-rays property and optimization, J. Optimization Theory Appl. , 123 (2004), 479–496. MR 2005i :49011

    Rocca M. , 'Minty variational inequalities, increase-along-rays property and optimization ' (2004 ) 123 J. Optimization Theory Appl. : 479 -496.

    • Search Google Scholar
  • Crespi, G., Ginchev, I. , and Rocca, M. , Existence of solutions and star-shapedness in Minty variational inequalities, J. Global Optim. , 32 (2005), 485–494. MR 2006g :49017

    Rocca M. , 'Existence of solutions and star-shapedness in Minty variational inequalities ' (2005 ) 32 J. Global Optim. : 485 -494.

    • Search Google Scholar
  • Diewert, W. , Alternative characterizations of six kind of quasiconvexity in the nondifferentiable case with applications to nonsmooth programming, Generalized Concavity in Optimization and Economics , eds. S. Schaible and W. Ziemba, Academic Press, New York, 1981, 51–95.

    Diewert W. , '', in Generalized Concavity in Optimization and Economics , (1981 ) -.

  • John, R. , Variational inequalities and pseudomonotone functions: some characterizations, Proceedings of the 5th Symposium on Generalized Convexity and Generalized Monotonicity , eds. J.-P. Crouzeix, J.-E. Martinez-Legaz and M. Volle, Luminy, June 17–21, 1996, Nonconvex Optimization and Its Applications , 27 (1998), Kluwer, Dordrecht, 291–301. MR 99h :49011

    John R. , '', in Proceedings of the 5th Symposium on Generalized Convexity and Generalized Monotonicity , (1998 ) -.

  • John, R. , A note on Minty variational inequalities and generalized monotonicity, Proceedings of the 6th Symposium on Generalized Convexity and Generalized Monotonicity , eds. N. Hadjisavvas, J.-E. Martinez-Legaz, J.-P. Penot, Samos, September 1999, Lecture Notes in Economics and Mathematical Systems , 502 (2001), Springer-Verlag, Berlin, 240–246. MR 2002b :49019

    John R. , '', in Proceedings of the 6th Symposium on Generalized Convexity and Generalized Monotonicity , (2001 ) -.

  • Karamardian, S. and Schaible, S. , Seven kinds of monotone maps, J. Optimization Theory Appl. , 66 (1990), 37–46. MR 91e :26016

    Schaible S. , 'Seven kinds of monotone maps ' (1990 ) 66 J. Optimization Theory Appl. : 37 -46.

    • Search Google Scholar
  • Komlósi, S. , Some properties of nondifferentiable pseudoconvex functions, Math. Programming , 26 (1983), 232–237. MR 84m :26021

    Komlósi S. , 'Some properties of nondifferentiable pseudoconvex functions ' (1983 ) 26 Math. Programming : 232 -237.

    • Search Google Scholar
  • Komlósi, S. , Generalized monotonicity in non-smooth analysis, Generalized Convexity , eds. S. Komlósi, T. Rapcsák and S. Schaible, Springer Verlag, Heidelberg, 1994, 263–275. MR 95a :49038

    Komlósi S. , '', in Generalized Convexity , (1994 ) -.

  • Komlósi, S. , On the Stampacchia and Minty variational inequalities, Generalized Convexity and Optimization for Economic and Financial Decisions , eds. G. Giorgi and F. Rossi, Pitagora Editrice, Bologna, Italy, 1999, 231–260. MR 2000e :49016

    Komlósi S. , '', in Generalized Convexity and Optimization for Economic and Financial Decisions , (1999 ) -.

  • Minty, G. J. , On the generalization of a direct method of the calculus of variations, Bull. American Math. Soc. , 73 (1967), 314–321. MR 35 //3501

    Minty G. J. , 'On the generalization of a direct method of the calculus of variations ' (1967 ) 73 Bull. American Math. Soc. : 314 -321.

    • Search Google Scholar
  • Stampacchia, G. , Formes bilineares coercitives sur les ensembles convexes, C.R. Acad. Sciences de Paris , 258 (1964), 4413–4416. MR 29 //3864

    Stampacchia G. , 'Formes bilineares coercitives sur les ensembles convexes ' (1964 ) 258 C.R. Acad. Sciences de Paris : 4413 -4416.

    • Search Google Scholar