View More View Less
  • 1 University of Guelph Department of Mathematics and Statistics Guelph Ontario N1G 2W1 Canada
  • 2 University of Illinois at Chicago Department of Mathematics, Statistics and Computer Science Chicago Il. 60607-7045 USA
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Let a and b be real numbers with a < b , Let υ : [ a, b ] → ℝ be continuous and convex. An n-dimensional extension of the inequality

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\tfrac{1}{{b - a}}\int\limits_a^b {v(x)dx} \leqq \tfrac{{v(a) + v(b)}}{2}$$ \end{document}
is given for a large family of convex sets.

  • Federer, H. , Geometric Measure Theory , Springer-Verlag, New York Inc., 1969. MR 41 //1976

  • Fischer, P. and Slodkowski, Z. , Monotonicity of the Integral Mean and Convex Functions. Journal of Convex Analysis , 8 (2001), 489–509. MR 2003d :49003

    Slodkowski Z. , 'Monotonicity of the Integral Mean and Convex Functions ' (2001 ) 8 Journal of Convex Analysis : 489 -509.

    • Search Google Scholar
  • Fischer, P. and Slodkowski, Z. , Mean Value Inequalities for Convex and Starshaped Sets, Aequationes Mathematicae , Vol. 70(3) (2005), 213–224. MR 2007c :52008

    Slodkowski Z. , 'Mean Value Inequalities for Convex and Starshaped Sets ' (2005 ) 70 Aequationes Mathematicae : 213 -224.

    • Search Google Scholar
  • Mattila, P. , Geometry of Sets and Measures in Euclidean Spaces , Cambridge University Press, Cambridge, UK, 1995. MR 96h :28006

    Mattila P. , '', in Geometry of Sets and Measures in Euclidean Spaces , (1995 ) -.

  • Niculescu, C. P. and Persson, L. , Old and new on the Hermite-Hadamard inequality Real Analysis Exchange , Vol. 29(2) (2003/2004), pp. 663–686. MR 2005f :26063

    Persson L. , 'Old and new on the Hermite-Hadamard inequality ' (2003 ) 29 Real Analysis Exchange : 663 -686.

    • Search Google Scholar
  • Niculescu, C. P. and Persson, L. , Convex Functions and Their Application, A Contemporary Approach , Springer, 2006. MR 2006m :26001

  • Phelps, R. R. , Lectures on Choquet’s Theorem , Van Nostrand-Reinhold, Princeton, N.J., 1966. MR 33 //1690

    Phelps R. R. , '', in Lectures on Choquet’s Theorem , (1966 ) -.

  • Rockefellar, R. T. , Convex Analysis , Princeton University Press, Princeton, New Jersey, 1970. MR 43 //445

    Rockefellar R. T. , '', in Convex Analysis , (1970 ) -.

  • Valentine, F. A. , Convex Sets , McGraw-Hill Book Company, New York, 1964. MR 30 //503

    Valentine F. A. , '', in Convex Sets , (1964 ) -.