Let a and b be real numbers with a < b , Let υ : [ a, b ] → ℝ be continuous and convex. An n-dimensional extension of the inequality
Federer, H. , Geometric Measure Theory , Springer-Verlag, New York Inc., 1969. MR 41 //1976
Fischer, P. and Slodkowski, Z. , Monotonicity of the Integral Mean and Convex Functions. Journal of Convex Analysis , 8 (2001), 489–509. MR 2003d :49003
Slodkowski Z. , 'Monotonicity of the Integral Mean and Convex Functions ' (2001 ) 8 Journal of Convex Analysis : 489 -509.
Fischer, P. and Slodkowski, Z. , Mean Value Inequalities for Convex and Starshaped Sets, Aequationes Mathematicae , Vol. 70(3) (2005), 213–224. MR 2007c :52008
Slodkowski Z. , 'Mean Value Inequalities for Convex and Starshaped Sets ' (2005 ) 70 Aequationes Mathematicae : 213 -224.
Mattila, P. , Geometry of Sets and Measures in Euclidean Spaces , Cambridge University Press, Cambridge, UK, 1995. MR 96h :28006
Mattila P. , '', in Geometry of Sets and Measures in Euclidean Spaces , (1995 ) -.
Niculescu, C. P. and Persson, L. , Old and new on the Hermite-Hadamard inequality Real Analysis Exchange , Vol. 29(2) (2003/2004), pp. 663–686. MR 2005f :26063
Persson L. , 'Old and new on the Hermite-Hadamard inequality ' (2003 ) 29 Real Analysis Exchange : 663 -686.
Niculescu, C. P. and Persson, L. , Convex Functions and Their Application, A Contemporary Approach , Springer, 2006. MR 2006m :26001
Phelps, R. R. , Lectures on Choquet’s Theorem , Van Nostrand-Reinhold, Princeton, N.J., 1966. MR 33 //1690
Phelps R. R. , '', in Lectures on Choquet’s Theorem , (1966 ) -.
Rockefellar, R. T. , Convex Analysis , Princeton University Press, Princeton, New Jersey, 1970. MR 43 //445
Rockefellar R. T. , '', in Convex Analysis , (1970 ) -.
Valentine, F. A. , Convex Sets , McGraw-Hill Book Company, New York, 1964. MR 30 //503
Valentine F. A. , '', in Convex Sets , (1964 ) -.