Author:
Jörn Quistorff University of Applied Sciences Department 4, FHTW Berlin D-10313 Berlin Germany

Search for other papers by Jörn Quistorff in
Current site
PubMed
Close
Restricted access
Let n, k ∈ ℕ with 2 kn and X be an n -set. The Enomoto-Katona space
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathcal{R}: = \left\{ {\{ A,B\} \subseteqq \left( {_k^X } \right)\left| {A \cap } \right.B = \not 0} \right\},$$ \end{document}
consisting of all unordered pairs of disjoint k -element subsets of X and equipped with
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$d^\mathcal{R}$$ \end{document}
({ A,B }, { S,T }) ≔ min {| A \ S |+| B \ T |,| A \ T |+| B \ S |}, is considered. The proof of the triangle inequality for
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$d^\mathcal{R}$$ \end{document}
is simplified. Upper bounds on the coding type problem, i.e. the determination of the maximum cardinality of a code consisting of unordered pairs of subsets far away from each other, are improved. The sphere packing problem, i.e. the determination of the maximum number of disjoint balls of a prescribed radius, is introduced and discussed. It is less closely connected to the first problem than it is in the most important spaces of coding theory.
• Collapse
• Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics)

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

• Imre BÁRÁNY (Rényi Institute of Mathematics)
• Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
• Péter CSIKVÁRI (ELTE, Budapest)
• Joshua GREENE (Boston College)
• Penny HAXELL (University of Waterloo)
• Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
• Ron HOLZMAN (Technion, Haifa)
• Satoru IWATA (University of Tokyo)
• Tibor JORDÁN (ELTE, Budapest)
• Roy MESHULAM (Technion, Haifa)
• Frédéric MEUNIER (École des Ponts ParisTech)
• Márton NASZÓDI (ELTE, Budapest)
• Eran NEVO (Hebrew University of Jerusalem)
• János PACH (Rényi Institute of Mathematics)
• Péter Pál PACH (BME, Budapest)
• Andrew SUK (University of California, San Diego)
• Zoltán SZABÓ (Princeton University)
• Martin TANCER (Charles University, Prague)
• Gábor TARDOS (Rényi Institute of Mathematics)
• Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

• CABELLS Journalytics
• CompuMath Citation Index
• Essential Science Indicators
• Mathematical Reviews
• Science Citation Index Expanded (SciSearch)
• SCOPUS
• Zentralblatt MATH

2023
Web of Science
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder's
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher's
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)

Mar 2024 5 0 0
Apr 2024 3 0 0
May 2024 1 0 0
Jun 2024 4 0 1
Jul 2024 8 0 0
Aug 2024 7 0 0
Sep 2024 10 0 0

Author:

Author:

Author:

Author:

Authors: and

Authors: , , and

Authors: and

Authors: and

Author: