A collector samples with replacement a set of n ≧ 2 distinct coupons until he has n − m , 0 ≦ m < n , distinct coupons for the first time. We refine the limit theorems concerning the standardized random number of necessary draws if n → ∞ and m is fixed: we give a one-term asymptotic expansion of the distribution function in question, providing a better approximation of it, than the one given by the limiting distribution function, and proving in particular that the rate of convergence in these limiting theorems is of order (log n )/ n .