A collector samples with replacement a set of n ≧ 2 distinct coupons until he has n − m , 0 ≦ m < n , distinct coupons for the first time. We refine the limit theorems concerning the standardized random number of necessary draws if n → ∞ and m is fixed: we give a one-term asymptotic expansion of the distribution function in question, providing a better approximation of it, than the one given by the limiting distribution function, and proving in particular that the rate of convergence in these limiting theorems is of order (log n )/ n .
Baum, L. E. and Billingsley, P. , Asymptotic distributions for the coupon collector’s problem, Ann. Math. Statist. , 36 (1965), 1835–1839. MR 31 #6263
Billingsley P. , 'Asymptotic distributions for the coupon collector’s problem ' (1965 ) 36 Ann. Math. Statist. : 1835 -1839.
Csäorgő, S. , A rate of convergence for coupon collectors, Acta Sci. Math. (Szeged) , 57 (1993), 337–351. MR 95b :60008
Csäorgő S. , 'A rate of convergence for coupon collectors ' (1993 ) 57 Acta Sci. Math. (Szeged) : 337 -351.
Erdős, P. and Rényi, A. , On a classical problem of probability theory, Magyar Tud. Akad. Mat. Kutató Int. Közl. , 6 (1961), 215–220. MR 27 #794
Rényi A. , 'On a classical problem of probability theory ' (1961 ) 6 Magyar Tud. Akad. Mat. Kutató Int. Közl. : 215 -220.
Nielsen, N. , Handbuch der Theorie der Gammafunktion , Teubner, Leipzig, 1906. [Reprinted as Band I of Die Gammafunktion , Chelsea, New York, 1965.] MR 32 #2622
Nielsen N. , '', in Handbuch der Theorie der Gammafunktion , (1906 ) -.
Petrov, V. V. , Limit Theorems of Probability Theory: Sequences Of Independent Random Variables , Oxford University Press, Oxford, 1995. MR 96h :60048
Petrov V. V. , '', in Limit Theorems of Probability Theory: Sequences Of Independent Random Variables , (1995 ) -.
Pósfai, A. , Rates of convergence for normal approximation in incomplete coupon collection, Acta Sci. Math. (Szeged) , 73 (2007), no. 1–2, 333–348. MR 2339869
Pósfai A. , 'Rates of convergence for normal approximation in incomplete coupon collection ' (2007 ) 73 Acta Sci. Math. (Szeged) : 333 -348.