Authors: , and
View More View Less
• 1 University of Technology Mathematical Faculty D-09107 Chemnitz Germany
• 2 Hungarian Academy of Sciences A. Rényi Institute of Mathematics Pf. 127 H-1364 Budapest Hungary
Restricted access

USD  $25.00 ### 1 year subscription (Individual Only) USD$800.00

K. Zindler [47] and P. C. Hammer and T. J. Smith [19] showed the following: Let K be a convex body in the Euclidean plane such that any two boundary points p and q of K , that divide the circumference of K into two arcs of equal length, are antipodal. Then K is centrally symmetric. [19] announced the analogous result for any Minkowski plane

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{M}^2$$ \end{document}
, with arc length measured in the respective Minkowski metric. This was recently proved by Y. D. Chai — Y. I. Kim [7] and G. Averkov [4]. On the other hand, for Euclidean d -space ℝ d , R. Schneider [38] proved that if K ⊂ ℝ d is a convex body, such that each shadow boundary of K with respect to parallel illumination halves the Euclidean surface area of K (for the definition of “halving” see in the paper), then K is centrally symmetric. (This implies the result from [19] for ℝ 2 .) We give a common generalization of the results of Schneider [38] and Averkov [4]. Namely, let
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{M}^d$$ \end{document}
be a d -dimensional Minkowski space, and K
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\mathbb{M}^d$$ \end{document}
be a convex body. If some Minkowskian surface area (e.g., Busemann’s or Holmes-Thompson’s) of K is halved by each shadow boundary of K with respect to parallel illumination, then K is centrally symmetric. Actually, we use little from the definition of Minkowskian surface area(s). We may measure “surface area” via any even Borel function ϕ: S d −1 → ℝ, for a convex body K with Euclidean surface area measure dS K ( u ), with ϕ( u ) being dS K ( u )-almost everywhere non-0, by the formula B ↦ ∫ B ϕ( u ) dS K ( u ) (supposing that ϕ is integrable with respect to dS K ( u )), for BS d −1 a Borel set, rather than the Euclidean surface area measure B ↦ ∫ B dS K ( u ). The conclusion remains the same, even if we suppose surface area halving only for parallel illumination from almost all directions. Moreover, replacing the surface are a measure dS K ( u ) by the k -th area measure of K ( k with 1 ≦ kd − 2 an integer), the analogous result holds. We follow rather closely the proof for ℝ d , which is due to Schneider [38].

• Alexandroff, A. D. , Zur Theorie der gemischten Volumina von konvexen Körpern, II. Neue Ungleichungen zwischen den gemischten Volumina und ihre Anwendungen (Russian, German summary), Mat. Sb. , 2 (1937), 1205–1238. Zbl 18 ,276

Alexandroff A. D. , 'Zur Theorie der gemischten Volumina von konvexen Körpern, II. Neue Ungleichungen zwischen den gemischten Volumina und ihre Anwendungen (Russian, German summary) ' (1937 ) 2 Mat. Sb. : 1205 -1238.

• Andrews, G. E., Askey, R. and Roy, R. , Special Functions . Encyclopedia of Mathematics and its Applications 71 , Cambridge University Press, Cambridge, 1999. MR 2000g :33001

Roy R. , '', in Special Functions , (1999 ) -.

• Auerbach, H. , Sur un problme de M. Ulam concernant l’équilibre des corps flottants, Studia Math. , 7 (1938), 121–142. Zbl 18 .175.

Auerbach H. , 'Sur un problme de M. Ulam concernant l’équilibre des corps flottants ' (1938 ) 7 Studia Math. : 121 -142.

• Averkov, G. , On boundary arcs joining antipodal points of a planar convex body, Beiträge Algebra Geom. , 47 (2006), no. 2, 489–503. MR 2008f :52004

Averkov G. , 'On boundary arcs joining antipodal points of a planar convex body ' (2006 ) 47 Beiträge Algebra Geom. : 489 -503.

• Blaschke, W. , Kreis und Kugel . Zweite durchgesehene verbesserte Auflage, de Gruyter, Berlin, 1956. MR 17 ,1123

Blaschke W. , '', in Kreis und Kugel , (1956 ) -.

• Böröczky, K., Jr. , The stability of the Rogers-Shephard inequality and of some related inequalities, Adv. Math. , 190 (2005), no. 1, 47–76. MR 2005i :52013

Böröczky K. , 'The stability of the Rogers-Shephard inequality and of some related inequalities ' (2005 ) 190 Adv. Math. : 47 -76.

• Chai, Y. D. and Kim, Y. I. , Curves of constant relative breadth, Kyungpook Math. J. , 37 (1997), no. 2, 365–370. MR 98k :52010

Kim Y. I. , 'Curves of constant relative breadth ' (1997 ) 37 Kyungpook Math. J. : 365 -370.

• Delsarte, P., Goethals, J. M. and Seidel, J. J. , Spherical codes and designs, Geom. Dedicata , 6 (1977), no. 3, 363–383. MR 58 #5302

Seidel J. J. , 'Spherical codes and designs ' (1977 ) 6 Geom. Dedicata : 363 -383.

• Dunford, N. and Schwartz, J. , Linear Operators. I. General Theory . Vol. I. Interscience Publishers, New York, 1958. MR 22 #8302

Schwartz J. , '', in Linear Operators. I. General Theory. Vol. I , (1958 ) -.

• Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G. , Higher Transcendental Functions II . McGraw-Hill, New York-Toronto-London, 1953. MR 15 ,419i

Tricomi F. G. , '', in Higher Transcendental Functions II , (1953 ) -.

• Ewald, G., Larman, D. G. and Rogers, C. A. , The directions of the line segments and the r -dimensional balls on the boundary of a convex body in Euclidean space, Mathematika , 17 (1970), 1–20. MR 42 #5161

Rogers C. A. , 'The directions of the line segments and the r-dimensional balls on the boundary of a convex body in Euclidean space ' (1970 ) 17 Mathematika : 1 -20.

• Falconer, K. J. , Applications of a result on spherical integration to the theory of convex sets, Amer. Math. Monthly , 90 (1983), no. 10, 690–693. MR 85f :52012

Falconer K. J. , 'Applications of a result on spherical integration to the theory of convex sets ' (1983 ) 90 Amer. Math. Monthly : 690 -693.

• Funk, P. , Über Flächen mit lauter geschlossenen geodätischen Linien, Math. Ann. , 74 (1913), no. 2, 278–300. Jahrbuch Fortschr. Math. 44,692

Funk P. , 'Über Flächen mit lauter geschlossenen geodätischen Linien ' (1913 ) 74 Math. Ann. : 278 -300.

• Funk, P. , Über eine geometrische Anwendung der Abelschen Integralgleichung, Math. Ann. , 77 (1915), no. 1, 129–135. Jahrbuch Fortschr. Math. 45,533

Funk P. , 'Über eine geometrische Anwendung der Abelschen Integralgleichung ' (1915 ) 77 Math. Ann. : 129 -135.

• Funk, P. , Beiträge zur Theorie der Kugelfunktionen, Math. Ann. , 77 (1915), no. 1, 136–152. Jahrbuch Fortschr. Math. 45,702

Funk P. , 'Beiträge zur Theorie der Kugelfunktionen ' (1915 ) 77 Math. Ann. : 136 -152.

• Gardner, R. J. , Geometric Tomography , Encyclopedia of Mathematics and its Applications 58 , Cambridge University Press, Cambridge, 1995. MR 96j :52006

Gardner R. J. , '', in Geometric Tomography , (1995 ) -.

• Groemer, H. , Fourier series and spherical harmonics in convexity, Handbook of Convex Geometry , Vol. A, B, 1259–1295, North-Holland, Amsterdam, 1993. MR 94j :52001

Groemer H. , '', in Handbook of Convex Geometry, Vol. A, B , (1993 ) -.

• Groemer, H., Geometric Applications of Fourier Series and Spherical Harmonics , Encyclopedia of Mathematics and its Applications 61 , Cambridge University Press, Cambridge, 1996. MR 97j :52001

Groemer H. , '', in Geometric Applications of Fourier Series and Spherical Harmonics , (1996 ) -.

• Hammer, P. C. and Smith, T. J. , Conditions equivalent to central symmetry of convex curves, Math. Proc. Cambridge Philos. Soc. , 60 (1964), 779–785. MR 30 #506

Smith T. J. , 'Conditions equivalent to central symmetry of convex curves ' (1964 ) 60 Math. Proc. Cambridge Philos. Soc. : 779 -785.

• Hecke, E. , Über orthogonal-invariante Integralgleichungen, Math. Ann. , 78 (1917), no. 1, 398–404. Jahrbuch Fortschr. Math. 46,632

Hecke E. , 'Über orthogonal-invariante Integralgleichungen ' (1917 ) 78 Math. Ann. : 398 -404.

• Heil, E. and Martini, H. , Special convex bodies, Handbook of Convex Geometry , Vol. A, B, 347–385, North-Holland, Amsterdam, 1993. MR 94h :52001

Martini H. , '', in Handbook of Convex Geometry, Vol. A, B , (1993 ) -.

• Hug, D. and Schneider, R. , Stability results involving surface area measures of convex bodies. IV-th Internat. Conf. in “Stochastic Geometry, Convex Bodies, Empirical Measures & Appls. to Eng. Sci.”, Vol. II (Tropea, 2001), Rend. Circ. Mat. Palermo (2), Suppl., 70 , part II (2002), 21–51. MR 2004b :52004

Schneider R. , 'Stability results involving surface area measures of convex bodies. IV-th Internat. Conf. in “Stochastic Geometry, Convex Bodies, Empirical Measures & Appls. to Eng. Sci.”, Vol. II (Tropea, 2001) ' (2002 ) 70 Rend. Circ. Mat. Palermo (2) : 21 -51.

• Ivanov, B. A. , Straight line segments on the boundary of a convex body (Russian), Ukrain. Geom. Sb. , No. 13 (1973), 69–71., 2. MR 51 #13864

• Lifshitz, I. M. and Pogorelov, A. V. , On the determination of Fermi surfaces and electron velocities in metals by the oscillation of magnetic susceptibility (Russian), Dokl. Akad. Nauk SSSR , 96 (1954), 1143–1145. Zbl 57 .448

Pogorelov A. V. , 'On the determination of Fermi surfaces and electron velocities in metals by the oscillation of magnetic susceptibility (Russian) ' (1954 ) 96 Dokl. Akad. Nauk SSSR : 1143 -1145.

• Lassak, M. and Martini, H. , Reduced bodies in Minkowski space, Acta Math. Hungar. , 106 (2005), no. 1–2, 17–26. MR 2005m :52008

Martini H. , 'Reduced bodies in Minkowski space ' (2005 ) 106 Acta Math. Hungar. : 17 -26.

• Makai, E. , Jr., Martini, H. and Ódor, T. , Maximal sections and centrally symmetric bodies, Mathematika , 47 (2000), no. 1–2, 19–30. MR 2003e :52005

Ódor T. , 'Maximal sections and centrally symmetric bodies ' (2000 ) 47 Mathematika : 19 -30.

• Makai, E. , Jr., Martini, H. and Ódor, T. , On an integro-differential transform on the sphere, Studia Sci. Math. Hungar. , 38 (2001), 299–312. MR 2002m :44002

Ódor T. , 'On an integro-differential transform on the sphere ' (2001 ) 38 Studia Sci. Math. Hungar. : 299 -312.

• Makai, E., Jr. and Soltan, V. , Lower bounds on the numbers of shadow-boundaries and illuminated regions of a convex body, Intuitive Geometry (Szeged, 1991), 249–268, Colloq. Math. Soc. János Bolyai 63 , North-Holland, Amsterdam, 1994. MR 97d :52003

Soltan V. , '', in Intuitive Geometry (Szeged, 1991) , (1994 ) -.

• Martini, H. , Shadow-boundaries of convex bodies, Combinatorics (Acireale, 1992), Discrete Math. , 155 (1996), no. 1–3, 161–172. MR 97j :52005

Martini H. , 'Shadow-boundaries of convex bodies, Combinatorics (Acireale, 1992) ' (1996 ) 155 Discrete Math. : 161 -172.

• Martini, H. and Swanepoel, K. J. , The geometry of Minkowski spaces — a survey. II, Expositiones Math. , 22 (2004), no. 2, 93–144. MR 2005h :46028

Swanepoel K. J. , 'The geometry of Minkowski spaces — a survey. II ' (2004 ) 22 Expositiones Math. : 93 -144.

• Martini, H. and Soltan, V. , Antipodality properties of finite sets in Euclidean space, Discrete Math. , 290 (2005), no. 2–3, 221–228. MR 2005i :52017

Soltan V. , 'Antipodality properties of finite sets in Euclidean space ' (2005 ) 290 Discrete Math. : 221 -228.

• Müller, C. , Spherical Harmonics , Lecture Notes in Mathematics 17 , Springer, Berlin, 1966. MR 33 #7593

Müller C. , '', in Spherical Harmonics , (1966 ) -.

• Petty, C. M. , On Minkowski Geometries , Ph.D. dissertation, University of South California, Los Angeles, 1952.

Petty C. M. , '', in On Minkowski Geometries , (1952 ) -.

• Petty, C. M. , Centroid surfaces, Pacific J. Math. , 11 (1961), 1535–1547. MR 24 #A3558

Petty C. M. , 'Centroid surfaces ' (1961 ) 11 Pacific J. Math. : 1535 -1547.

• Sansone, G. , Orthogonal Functions (Revised ed.), Wiley, Interscience Publishers, London-New York, 1959. MR 21 #2140

Sansone G. , '', in Orthogonal Functions , (1959 ) -.

• Schneider, R. , Zu einem Problem von Shephard über die Projektionen konvexer Körper (German), Math. Z. , 101 (1967), 71–82. MR 36 #2059

Schneider R. , 'Zu einem Problem von Shephard über die Projektionen konvexer Körper (German) ' (1967 ) 101 Math. Z. : 71 -82.

• Schneider, R. , Functions on a sphere with vanishing integrals over certain subspheres, J. Math. Anal. Appl. , 26 (1969), 381–384. MR 38 #6004

Schneider R. , 'Functions on a sphere with vanishing integrals over certain subspheres ' (1969 ) 26 J. Math. Anal. Appl. : 381 -384.

• Schneider, R. , Über eine Integralgleichung in der Theorie der konvexen Körper, Math. Nachr. , 44 (1970), 55–75. MR 43 #1043

Schneider R. , 'Über eine Integralgleichung in der Theorie der konvexen Körper ' (1970 ) 44 Math. Nachr. : 55 -75.

• Schneider, R. , Curvature measures of convex bodies, Ann. Mat. Pura Appl. , (4) 116 (1978), 101–134. MR 80d :52012

Schneider R. , 'Curvature measures of convex bodies ' (1978 ) 116 Ann. Mat. Pura Appl. : 101 -134.

• Schneider, R. , Convex Bodies: The Brunn-Minkowski Theory . Encyclopedia of Mathematics and its Applications 44 , Cambridge University Press, Cambridge, 1993. MR 94d :52007

Schneider R. , '', in Convex Bodies: The Brunn-Minkowski Theory , (1993 ) -.

• Seeley, R. T. , Spherical harmonics, Amer. Math. Monthly 73 (4), Part II, (1966), 115–121. MR 34 #1577

Seeley R. T. , 'Spherical harmonics ' (1966 ) 73 Amer. Math. Monthly : 115 -121.

• Süss, W. , Über Eibereiche mit Mittelpunkt, Math.-Phys. Semesterber. , 1 (1950), 273–287. MR 12 ,46d

Süss W. , 'Über Eibereiche mit Mittelpunkt ' (1950 ) 1 Math.-Phys. Semesterber. : 273 -287.

• Thompson, A. C. , Minkowski Geometry . Encyclopedia of Mathematics and its Applications, 63 , Cambridge University Press, Cambridge, 1996. MR 97f :52001

Thompson A. C. , '', in Minkowski Geometry , (1996 ) -.

• Ungar, P. , Freak theorem about functions on a sphere, J. London Math. Soc. , 29 (1954), 100–103. MR 15 ,299b

Ungar P. , 'Freak theorem about functions on a sphere ' (1954 ) 29 J. London Math. Soc. : 100 -103.

• Vilenkin, N. Ja. , Special Functions and the Theory of Group Representations , Translated from the Russian by V. N. Singh. Translations of Math. Monographs, Vol. 22, AMS, Providence, R. I., 1968. MR 37 #5429.

Vilenkin N. Ja. , '', in Special Functions and the Theory of Group Representations , (1968 ) -.

• Vilenkin, N. Ja. and Klimyk, A. U. , Representations of Lie Groups and Special Functions . Vol. 2 (English summary), Class 1 Representations, Special Functions, and Integral Transforms, Translated from the Russian by V. A. Groza and A. A. Groza, Math. and its Appls. (Soviet Series) 74 , Kluwer Academic Publishers Group, Dordrecht, 1993. MR 94m :22001.

Klimyk A. U. , '', in Representations of Lie Groups and Special Functions , (1993 ) -.

• Zindler, K. , Über konvexe Gebilde, II. Teil, Monatsh. Math. Phys. , 31 (1921), 25–57. Jahrbuch Fortschr. Math. 48.0833.05

Zindler K. , 'Über konvexe Gebilde, II. Teil ' (1921 ) 31 Monatsh. Math. Phys. : 25 -57.

## On Weakly-neighbourly polyhedra

Author: A. Bölcseki

## On the distribition of residue classes of quadratic forms and integer-detecting sequences in number fields

Authors: C. Elsner and J. W. Sander

## Chogomogeneity one G-pseudomanifolds

Author: R. Popper

## A right inverse function theorem withhout assuming differentiability

Author: B. Slezák

## Lower classes of integrated fractional Brownian motion

Author: C. El-Nouty