View More View Less
  • 1 Alfréd Rényi Institute of Mathematics P.O. Box 127 H-1364 Budapest Hungary
  • | 2 Eötvös Loránd University Department of Geometry Pázmány Péter sétány 1/C H-1117 Budapest Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

A version of the celebrated Moment Theorem of László Fejes Tóth is proved where the integrand is based not on the second moment but on another quadratic form.

  • Aurenhammer, F. , Power diagrams: properties, algorithms and applications, SIAM J. Comput. , 16 (1987), no. 1, 78–96. MR88d :68096

    Aurenhammer F. , 'Power diagrams: properties, algorithms and applications ' (1987 ) 16 SIAM J. Comput. : 78 -96.

    • Search Google Scholar
  • Bonnesen, T. and Fenchel, W. , Theory of convex bodies . BCS. Assoc., Moscow (Idaho), 1987. Translated from German: Theorie der konvexen Körper. Springer-Verlag, 1934. MR88j :52001

    Fenchel W. , '', in Theory of convex bodies , (1987 ) -.

  • Böröczky, K., Jr. , Approximation of general smooth convex bodies, Adv. Math. , 153 (2000), no. 2, 325–341. MR2001g :52008

    Böröczky K. , 'Approximation of general smooth convex bodies ' (2009 ) 153 Adv. Math. : 325 -341.

    • Search Google Scholar
  • Böröczky, K., Jr. , The error of polytopal approximation with respect to the symmetric difference metric and the L p metric, Isr. J. Math. , 117 (2000), 1–28. MR2001c :65023

    Böröczky K. , 'The error of polytopal approximation with respect to the symmetric difference metric and the Lp metric ' (2009 ) 117 Isr. J. Math. : 1 -28.

    • Search Google Scholar
  • Böröczky, K., Jr. , Finite packing and covering , Cambridge University Press, 2004. MR2005g :52045

  • Böröczky, K. J. and Csikós, B. , Approximation of smooth convex bodies by circumscribed polytopes with respect to the surface area. www.renyi.hu/~carlos/surfapprox.pdf , submitted

  • Böröczky, K. J., Tick, P. and Wintsche, G. , Typical faces of best approximating three-polytopes, Beit. Alg. Geom. , 48 (2007), no. 2, 521–545. MR 2364805

    Wintsche G. , 'Typical faces of best approximating three-polytopes ' (2007 ) 48 Beit. Alg. Geom. : 521 -545.

    • Search Google Scholar
  • Fejes Tóth, G. , Sum of moments of convex polygons, Acta Math. Acad. Sci. Hungar. , 24 (1973), 417–421. MR 49#11388

    Fejes Tóth G. , 'Sum of moments of convex polygons ' (1973 ) 24 Acta Math. Acad. Sci. Hungar. : 417 -421.

    • Search Google Scholar
  • Fejes Tóth, G. , A stability criterion to the moment theorem, Studia Sci. Math. Hungar. , 38 (2001), 209–224. MR2003a :44007

    Fejes Tóth G. , 'A stability criterion to the moment theorem ' (2001 ) 38 Studia Sci. Math. Hungar. : 209 -224.

    • Search Google Scholar
  • Fejes Tóth, G. , Best partial covering of a convex domain by congruent circles of a given total area, Disc. Comp. Geom. , 38 (2007), no. 2, 259–271. MR2008g :52027

    Fejes Tóth G. , 'Best partial covering of a convex domain by congruent circles of a given total area ' (2007 ) 38 Disc. Comp. Geom. : 259 -271.

    • Search Google Scholar
  • Fejes Tóth, L. , The isepiphan problem for n -hedra, Amer. J. Math. , 70 (1948), 174–180. MR9 ,460f

    Fejes Tóth L. , 'The isepiphan problem for n-hedra ' (1948 ) 70 Amer. J. Math. : 174 -180.

  • Fejes Tóth, L. , Regular Figures , Pergamon Press, 1964. MR29 #2705

  • Fejes Tóth, L. , Lagerungen in der Ebene, auf der Kugel und im Raum , Springer-Verlag, Berlin, 1953. (2nd expanded edition, 1972.) MR50 #5603

    Fejes Tóth L. , '', in Lagerungen in der Ebene, auf der Kugel und im Raum , (1953 ) -.

  • Florian, A. , Integrale auf konvexen Mosaiken, Period. Math. Hungar. , 6 (1975), 23–38. MR51 #13870

  • Florian, A. , Extremum problems for convex discs and polyhedra, in: Handbook of convex geometry , North-Holland, Amsterdam, 1993, 177–221. MR94h :52024

    Florian A. , '', in Handbook of convex geometry , (1993 ) -.

  • Gruber, P. M. , Volume approximation of convex bodies by circumscribed polytopes, in: Applied geometry and discrete mathematics, DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 4, Amer. Math. Soc. , 1991, 309–317. MR92k :52009

  • Gruber, P. M. , A short analytic proof of Fejes Tóth’s theorem on sums of moments, Aequationes Math. , 58 (1999), no. 3, 291–295. MR2000j :52012

    Gruber P. M. , 'A short analytic proof of Fejes Tóth’s theorem on sums of moments ' (1999 ) 58 Aequationes Math. : 291 -295.

    • Search Google Scholar
  • Gruber, P. M. , Optimal configurations of finite sets in Riemannian 2-manifolds, Geom. Dedicata , 84 (2001), no. 1–3, 271–320. MR2002f :52017

    Gruber P. M. , 'Optimal configurations of finite sets in Riemannian 2-manifolds ' (2001 ) 84 Geom. Dedicata : 271 -320.

    • Search Google Scholar
  • Gruber, P. M. , Optimale Quantisierung, Math. Semesterber. , 49 (2002), no. 2, 227–251. MR2004d :52015

    Gruber P. M. , 'Optimale Quantisierung ' (2002 ) 49 Math. Semesterber. : 227 -251.

  • Gruber, P. M. , Optimum quantization and its applications, Adv. Math. , 186 (2004), no. 2, 456–497. MR2005e :94060

    Gruber P. M. , 'Optimum quantization and its applications ' (2004 ) 186 Adv. Math. : 456 -497.

    • Search Google Scholar
  • Gruber, P. M. , Convex and discrete geometry , Springer, 2007. MR2008f :52001

  • Schneider, R. , Convex Bodies — the Brunn-Minkowski theory , Cambridge Univ. Press, 1993. MR94d :52007

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
submission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2022

Online subsscription: 688 EUR / 860 USD
Print + online subscription: 776 EUR / 970 USD

Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)