View More View Less
  • 1 A. Razmadze Mathematical Institute M. Alexidze Street, 1 Tbilisi 0193 Georgia
  • | 2 I. Chavchavadze State University I. Chavchavadze Street, 32 Tbilisi 0128 Georgia
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

The notion of an almost measurable real-valued function is introduced and examined. Some properties of such functions are considered and their characterization is given. In particular, it is shown that the algebraic sum of two almost measurable functions can be a function without the property of almost measurability and that any almost measurable function becomes measurable with respect to an appropriate extension of the Lebesgue measure.

  • Gelbaum, B. R. and Olmsted, J. M. H. , Counterexamples in Analysis , Holden Day, San Francisco, 1964. MR30 #204

    Olmsted J. M. H. , '', in Counterexamples in Analysis , (1964 ) -.

  • Grzegorek, E. , Solution of a problem of Banach on σ -fields without continuous measures, Bull. Acad. Polon. Sci., Ser. Sci. Math. , 28 (1980), no. 1–2, 7–10. MR82h :04005

    Grzegorek E. , 'Solution of a problem of Banach on σ-fields without continuous measures ' (1980 ) 28 Bull. Acad. Polon. Sci., Ser. Sci. Math. : 7 -10.

    • Search Google Scholar
  • Kharazishvili, A. B. , Transformation Groups and Invariant Measures , World Scientific Publ. Co., London-Singapore, 1998. MR2000g :28028

    Kharazishvili A. B. , '', in Transformation Groups and Invariant Measures , (1998 ) -.

  • Kharazishvili, A. B. , On absolutely nonmeasurable additive functions, Georgian Mathematical Journal , 11 (2004), no. 2, 301–306. MR2005d :28005

    Kharazishvili A. B. , 'On absolutely nonmeasurable additive functions ' (2004 ) 11 Georgian Mathematical Journal : 301 -306.

    • Search Google Scholar
  • Kechris, A. S. , Classical Descriptive Set Theory , Springer-Verlag, New York, 1995. MR96e :03057

    Kechris A. S. , '', in Classical Descriptive Set Theory , (1995 ) -.

  • Kodaira, K. and Kakutani, S. , A nonseparable translation-invariant extension of the Lebesgue measure space, Ann. Math. , 52 (1950), 574–579. MR 12,246f

    Kakutani S. , 'A nonseparable translation-invariant extension of the Lebesgue measure space ' (1950 ) 52 Ann. Math. : 574 -579.

    • Search Google Scholar
  • Kuratowski, K. , Topology , vol. 1, Academic Press, New York-London, 1966. MR36 #840

    Kuratowski K. , '', in Topology, vol. 1 , (1966 ) -.

  • Miller, A. W. , Special subsets of the real line , in: Handbook of Set-Theoretic Topology, North-Holland Publ. Co., Amsterdam, 1984. MR86i :54037

    Miller A. W. , '', in Handbook of Set-Theoretic Topology , (1984 ) -.

  • Natkaniec, T. , Almost Continuity , WSP, Bydgoszcz, 1992. MR94f :54028

    Natkaniec T. , '', in Almost Continuity , (1992 ) -.

  • Oxtoby, J. C. , Measure and Category , Springer-Verlag, Berlin-New York, 1971. MR52 #14213

    Oxtoby J. C. , '', in Measure and Category , (1971 ) -.

  • Pfeffer, W. F. and Prikry, K. , Small spaces, Proc. London Math. Soc. , 58 (1989), no. 3, 417–438. MR90m :04001

    Prikry K. , 'Small spaces ' (1989 ) 58 Proc. London Math. Soc. : 417 -438.

  • Stallings, J. , Fixed point theorems for connectivity maps, Fund. Math. , 47 (1959), 249–263. MR22 #8485

    Stallings J. , 'Fixed point theorems for connectivity maps ' (1959 ) 47 Fund. Math. : 249 -263.

    • Search Google Scholar
  • Zakrzewski, P. , On a construction of universally small sets, Real Analysis Exchange , 28 (2002/03), no. 1, 221–226. MR2004c :03061

    Zakrzewski P. , 'On a construction of universally small sets ' (2002 ) 28 Real Analysis Exchange : 221 -226.

    • Search Google Scholar