View More View Less
  • 1 Sinop University Department of Mathematics, Faculty of Arts and Sciences TR-57000 Sinop Turkey
  • 2 TOBB Economics and Technology University Department of Mathematics, Faculty of Arts and Sciences Söğütözü TR-06530 Ankara Turkey
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

In the present work, using the concept of A -statistical convergence for double real sequences, we obtain a statistical approximation theorem for sequences of positive linear operators defined on the space of all real valued B -continuous functions on a compact subset of the real line. Furthermore, we display an application which shows that our new result is stronger than its classical version.

  • Anastassiou, G. A. and Duman, O. , A Baskakov type generalization of statistical Korovkin theory, J. Math. Anal. Appl. , 340 (2008), no. 1, 476–486. MR 2009c :41043

    Duman O. , 'A Baskakov type generalization of statistical Korovkin theory ' (2008 ) 340 J. Math. Anal. Appl. : 476 -486.

    • Search Google Scholar
  • Anastassiou, G. A. and Duman, O. , Statistical fuzzy approximation by fuzzy positive linear operators, Comput. Math. Appl. , 55 (2008), no. 3, 573–580. MR 2008k :41050

    Duman O. , 'Statistical fuzzy approximation by fuzzy positive linear operators ' (2008 ) 55 Comput. Math. Appl. : 573 -580.

    • Search Google Scholar
  • Altomare, F. and Campiti, M. , Korovkin-Type Approximation Theory and Its Applications , de Gruyter Stud. Math. 17 , Walter de Gruyter, Berlin, 1994. MR 95g :41001

    Campiti M. , '', in Korovkin-Type Approximation Theory and Its Applications , (1994 ) -.

  • Badea, I. , Modulus of continuity in Bögel sense and some applications for approximation by a Bernstein-type operator, Studia Univ. Babeş-Bolyai Ser. Math.-Mech. , 18 (1973), no. 2, 69–78. (in Romanian) MR 52 #3803

    Badea I. , 'Modulus of continuity in Bögel sense and some applications for approximation by a Bernstein-type operator ' (1973 ) 18 Studia Univ. Babeş-Bolyai Ser. Math.-Mech. : 69 -78.

    • Search Google Scholar
  • Badea, C. , Badea, I. and Gonska, H. H. , A test function and approximation by pseudopolynomials, Bull. Austral. Math. Soc. , 34 (1986), no. 1, 53–64. MR 87g :41048

    Gonska H. H. , 'A test function and approximation by pseudopolynomials ' (1986 ) 34 Bull. Austral. Math. Soc. : 53 -64.

    • Search Google Scholar
  • Badea, C. and Cottin, C. , Korovkin-type theorems for generalized Boolean sum operators , Approximation theory (Kecskemét, 1990), 51–68, Colloq. Math. Soc. János Bolyai, 58 , North-Holland, Amsterdam, 1991. MR 94c :41039

    Cottin C. , '', in Korovkin-type theorems for generalized Boolean sum operators , (1991 ) -.

  • Bögel, K. , Mehrdimensionale differentiation von funktionen mehrerer veränderlicher, J. Reine Angew. Math. , 170 (1934), 197–217.

    Bögel K. , 'Mehrdimensionale differentiation von funktionen mehrerer veränderlicher ' (1934 ) 170 J. Reine Angew. Math. : 197 -217.

    • Search Google Scholar
  • Bögel, K. , Über mehrdimensionale differentiation, integration und beschränkte variation, J. Reine Angew. Math. , 173 (1935), 5–29.

    Bögel K. , 'Über mehrdimensionale differentiation, integration und beschränkte variation ' (1935 ) 173 J. Reine Angew. Math. : 5 -29.

    • Search Google Scholar
  • Bögel, K. , Über die mehrdimensionale differentiation, Jahresber. Deutsch. Mat.-Verein. , 65 (1962), 45–71.

    Bögel K. , 'Über die mehrdimensionale differentiation ' (1962 ) 65 Jahresber. Deutsch. Mat.-Verein. : 45 -71.

    • Search Google Scholar
  • Duman, O., Khan, M. K. and Orhan, C. , A -Statistical convergence of approximating operators, Math. Inequal. Appl. , 6 (2003), no. 4, 689–699. MR 2004h :41024

    Orhan C. , 'A-Statistical convergence of approximating operators ' (2003 ) 6 Math. Inequal. Appl. : 689 -699.

    • Search Google Scholar
  • Duman, O., Erkuş, E. and Gupta, V. , Statistical rates on the multivariate approximation theory, Math. Comput. Modelling , 44 (2006), no. 9–10, 763–770. MR 2007k :41060

    Gupta V. , 'Statistical rates on the multivariate approximation theory ' (2006 ) 44 Math. Comput. Modelling : 763 -770.

    • Search Google Scholar
  • Erkuş, E., Duman, O. and Srivastava, H. M. , Statistical approximation of certain positive linear operators constructed by means of the Chan-Chyan-Srivastava polynomials, Appl. Math. Comput. , 182 (2006), no. 1, 213–222. MR 2292034

    Srivastava H. M. , 'Statistical approximation of certain positive linear operators constructed by means of the Chan-Chyan-Srivastava polynomials ' (2006 ) 182 Appl. Math. Comput. : 213 -222.

    • Search Google Scholar
  • Hamilton, H. J. , Transformations of multiple sequences, Duke Math. J. , 2 (1936), no. 1, 29–60. MR 1545904

    Hamilton H. J. , 'Transformations of multiple sequences ' (1936 ) 2 Duke Math. J. : 29 -60.

  • Hardy, G. H. , Divergent Series , Oxford Univ. Press, London, 1949. MR 11 , 25a

    Hardy G. H. , '', in Divergent Series , (1949 ) -.

  • Karakuş, S., Demirci, K. and Duman, O. , Equi-statistical convergence of positive linear operators, J. Math. Anal. Appl. , 339 (2008), no. 2, 1065–1072. MR 2008j :41015

    Duman O. , 'Equi-statistical convergence of positive linear operators ' (2008 ) 339 J. Math. Anal. Appl. : 1065 -1072.

    • Search Google Scholar
  • Korovkin, P. P. , Linear Operators and Approximation Theory , Hindustan Publ. Co., Delhi, 1960. MR 27 #561

    Korovkin P. P. , '', in Linear Operators and Approximation Theory , (1960 ) -.

  • Móricz, F. , Statistical convergence of multiple sequences, Arch. Math. (Basel), 81 (2004), no. 1, 82–89. MR 2004g :40001

    Móricz F. , 'Statistical convergence of multiple sequences ' (2004 ) 81 Arch. Math. (Basel) : 82 -89.

    • Search Google Scholar
  • Mursaleen and Edely, O. H. H. , Statistical convergence of double sequences, J. Math. Anal. Appl. , 288 (2003), no. 1, 223–231. MR 2004m :40004

    Edely O. H. H. , 'Statistical convergence of double sequences ' (2003 ) 288 J. Math. Anal. Appl. : 223 -231.

    • Search Google Scholar
  • Pringsheim, A. , Zur theorie der zweifach unendlichen zahlenfolgen, Math. Ann. , 53 (1900), 289–321. MR 1511092

    Pringsheim A. , 'Zur theorie der zweifach unendlichen zahlenfolgen ' (1900 ) 53 Math. Ann. : 289 -321.

    • Search Google Scholar
  • Robison, G. M. , Divergent double sequences and series, Amer. Math. Soc. Transl. , 28 (1926), 50–73. MR 1501332

    Robison G. M. , 'Divergent double sequences and series ' (1926 ) 28 Amer. Math. Soc. Transl. : 50 -73.

    • Search Google Scholar