View More View Less
  • 1 Griesmaystraße 19 / 1/12 A-4040 Linz Austria
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Let n be an arbitrary integer, let p be a prime factor of n . Denote by ω1 the pth primitive unity root,

\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$\omega _1 : = e^{\tfrac{{2\pi i}} {p}}$$ \end{document}
.Define ωiω1i for 0 ≦ ip − 1 and B ≔ {1, ω1 , …, ωp −1 } n ⊆ ℂ n .Denote by K ( n; p ) the minimum k for which there exist vectors ν1 , …, νkB such that for any vector wB , there is an i , 1 ≦ ik , such that νi · w = 0, where ν · w is the usual scalar product of ν and w .Gröbner basis methods and linear algebra proof gives the lower bound K ( n; p ) ≧ n ( p − 1).Galvin posed the following problem: Let m = m ( n ) denote the minimal integer such that there exists subsets A1 , …, Am of {1, …, 4 n } with | Ai | = 2 n for each 1 ≦ in , such that for any subset B ⊆ [4 n ] with 2 n elements there is at least one i , 1 ≦ im , with AiB having n elements. We obtain here the result m ( p ) ≧ p in the case of p > 3 primes.

  • Alon, N., Bergmann, E. E., Coppersmith, D and Odlyzko, A. M. , Balancing sets of vectors, IEEE Trans. Inform. Theory , vol. IT-34 (1988), no. 1, 128–130. MR 89i :94034

    Odlyzko A. M. , 'Balancing sets of vectors ' (1988 ) IT-34 IEEE Trans. Inform. Theory : 128 -130.

    • Search Google Scholar
  • Adams, W. W and Loustaunau, P. , An Introduction to Gröbner Bases , American Mathematical Society, 1994. MR 95g :13025

  • Anstee, R. P., Rónyai, L and Sali, A. , Shattering news, Graphs and Combinatorics , 18 (2002), no. 1, 59–73. MR 2003e :05134

    Sali A. , 'Shattering news ' (2002 ) 18 Graphs and Combinatorics : 59 -73.

  • Babai, L and Frankl, P. , Linear algebra methods in combinatorics , manuscript, September 1992.

  • Becker, T and Weispfenning, V. , Gröbner bases — a computational approach to commutative algebra , Springer-Verlag, Berlin, Heidelberg, 1993.

    Weispfenning V. , '', in Gröbner bases — a computational approach to commutative algebra , (1993 ) -.

    • Search Google Scholar
  • Cohen, A. M., Cuypers, H and Sterk, H. (eds.), Some Tapas of Computer Algebra , Springer-Verlag, Berlin, Heidelberg, 1999. MR 99k :00038

    '', in Some Tapas of Computer Algebra , (1999 ) -.

  • Enomota, H., Frankl, P., Ito, N and Nomura, K. , Codes with given distances, Graphs and Combinatorics , 3 (1987), no. 1, 25–38. MR 89a :94015

    Nomura K. , 'Codes with given distances ' (1987 ) 3 Graphs and Combinatorics : 25 -38.

  • Farr, J and Gao, S. , Computing Gröbner basis for vanishing ideal of -nite set of points, in: Applied algebra, algebraic algorithms and error-correcting codes , LNCS 3857, 118–127, Springer, Berlin, 2006. MR 2007c :13039

    Gao S. , '', in Applied algebra, algebraic algorithms and error-correcting codes , (2006 ) -.

  • Frankl, P and Rödl, V. , Forbidden intersections, Trans. Amer. Math. Soc. , 300 (1987), no. 1, 259–286. MR 88m :05003

    Rödl V. , 'Forbidden intersections ' (1987 ) 300 Trans. Amer. Math. Soc. : 259 -286.

  • Graham, R. L., Knuth, D. E and Patashnik, O. , Concrete Mathematics , Addison-Wesley, 1989. MR 91f :00001

  • Hegedűs, G and Rónyai, L. , Gröbner bases for complete uniform families, J. of Algebraic Combinatorics , 17 (2003), no. 2, 171–180. MR 2004b :13030

    Rónyai L. , 'Gröbner bases for complete uniform families ' (2003 ) 17 J. of Algebraic Combinatorics : 171 -180.

    • Search Google Scholar
  • Knuth, D. E. , Efficient balanced codes, IEEE Trans. Inform. Theory , vol. IT-32 (1986), no. 1, 51–53. MR 87d :94039

    Knuth D. E. , 'Efficient balanced codes ' (1986 ) IT-32 IEEE Trans. Inform. Theory : 51 -53.