Author:
View More View Less
• 1 Mansoura University Mathematics Department, Faculty of Science Mansoura 35516 Egypt
Restricted access

USD  $25.00 ### 1 year subscription (Individual Only) USD$800.00
In this paper we study the behavior of the difference equation
\documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $$x_{n + 1} = ax_{n - 2} + \frac{{bx_n x_{n - 2} }}{{cx_n + dx_{n - 3} }},n = 0,1,...$$ \end{document}
where the initial conditions x−3 , x−2 , x−1 , x0 are arbitrary positive real numbers and a, b, c, d are positive constants. Also, we give the solution of some special cases of this equation.
• Agarwal, R. P. and Popenda, J. , Periodic solutions of first order linear difference equations, Math. Comput. Modelling , 22 (1995), no. 1, 11–19. MR96e :39001

Popenda J. , 'Periodic solutions of first order linear difference equations ' (1995 ) 22 Math. Comput. Modelling : 11 -19.

• Amleh, A. M., Kirk, V. and Ladas, G. , On the dynamics of xn +1 = a + bxn −1 / A + Bxn −2 , Math. Sci. Res. Hot-Line , 5 (2001), no. 7, 1–15. MR2003f :39054

Ladas G. , 'On the dynamics of xn+1 = a+bxn−1/A+Bxn−2 ' (2001 ) 5 Math. Sci. Res. Hot-Line : 1 -15.

• Camouzis, E. and Ladas, G. , The rational recursive sequence xn +1 = bxn 2 /1+ xn −1 2 , Computers & Mathematics with Applications , 28 (1994), 37–43.

Ladas G. , 'The rational recursive sequence xn+1 = bxn2/1+xn−12 ' (1994 ) 28 Computers & Mathematics with Applications : 37 -43.

• Camouzis, E., Ladas, G. and Voulov, H. D. , On the dynamics of xn +1 = α + γxn −1 + δxn −2 / A + xn −2 , J. Differ Equations Appl. , 9 (2003), no. 8, 731–738. MR2004e :39005

Voulov H. D. , 'On the dynamics of xn+1 = α+γxn−1+δxn−2/A+xn−2 ' (2003 ) 9 J. Differ Equations Appl. : 731 -738.

• Cinar, C. , On the positive solutions of the difference equation xn +1 = axn −1 /1+ bxn xn −1 , Appl. Math. Comp. , 156 (2004), no. 2, 587–590. MR2005d :39092

Cinar C. , 'On the positive solutions of the difference equation xn+1 = axn−1/1+bxnxn−1 ' (2004 ) 156 Appl. Math. Comp. : 587 -590.

• Cinar, C. , On the positive solutions of the difference equation xn +1 = xn −1 /−1+ axn xn −1 , Appl. Math. Comp. , 158 (2004), no. 3, 809–812. MR 2095705

Cinar C. , 'On the positive solutions of the difference equation xn+1 = xn−1/−1+axnxn−1 ' (2004 ) 158 Appl. Math. Comp. : 809 -812.

• Elabbasy, E. M., El-Metwally, H. and Elsayed, E. M. , Global attractivity and periodic character of a fractional difference equation of order three, Yokohama Math. J. , Vol. 53 (2007), no. 2, 89–100. MR2008a :39008

Elsayed E. M. , 'Global attractivity and periodic character of a fractional difference equation of order three ' (2007 ) 53 Yokohama Math. J. : 89 -100.

• Elabbasy, E. M., El-Metwally, H. and Elsayed, E. M. , On the difference equation xn +1 = axnbxn / cxndxn −1 , Advances in Difference Equations , Vol. 2006 (2006), Article ID 82579, 1–10. MR2007f :39014

Elsayed E. M. , 'On the difference equation xn+1 = axn−bxn/cxn−dxn−1 ' (2006 ) 2006 Advances in Difference Equations : 1 -10.

• Elabbasy, E. M., El-Metwally, H. and Elsayed, E. M. , On the difference equations xn +1 = axnk / β + γ Π i =0 k xni , J. Conc. Appl. Math. , 5 (2007), no. 2, 101–113. MR2008b :39011

Elsayed E. M. , 'On the difference equations xn+1 = axn−k/β+γΠi=0kxn−i ' (2007 ) 5 J. Conc. Appl. Math. : 101 -113.

• Elabbasy, E. M., El-Metwally, H. and Elsayed, E. M. , On the periodic nature of some max-type difference equations, International Journal of Mathematics and Mathematical Sciences , Vol. 2005 (2005), no. 14, 2227–2239. MR2006f :39006

Elsayed E. M. , 'On the periodic nature of some max-type difference equations ' (2005 ) 2005 International Journal of Mathematics and Mathematical Sciences : 2227 -2239.

• Elabbasy, E. M., El-Metwally, H. and Elsayed, E. M. , Qualitative behavior of higher order difference equation, Soochow Journal of Mathematics , Vol. 33 (2007), no. 4, 861–873. MR2009a :39004

Elsayed E. M. , 'Qualitative behavior of higher order difference equation ' (2007 ) 33 Soochow Journal of Mathematics : 861 -873.

• El-Metwally, H., Grove, E. A., Ladas, G. and McGrath , On the difference equation yn +1 = yn −(2 k +1) + p / yn −(2 k +1) + qyn −2 l , Proceedings of the 6th ICDE, Taylor and Francis , London, 2004. MR2005f :39032

• El-Metwally, H., Grove, E. A., Ladas, G. and Voulov, H. D. , On the global attractivity and the periodic character of some difference equations, J. Differ. Equations Appl. , 7 (2001), no. 6, 1–14. MR2003e :39006

Voulov H. D. , 'On the global attractivity and the periodic character of some difference equations ' (2001 ) 7 J. Differ. Equations Appl. : 1 -14.

• R. Karatas, C. Cinar and D. Simsek , On positive solutions of the difference equation xn +1 = xn −5 /1+ xn −2 xn −5 , Int. J. Contemp. Math. Sci. , Vol. 1 (2006), no. 9–12, 495–500. MR 2287595

Simsek D. , 'On positive solutions of the difference equation xn+1 = xn−5/1+xn−2xn−5 ' (2006 ) 1 Int. J. Contemp. Math. Sci. : 495 -500.

• Kocic, V. L. and Ladas, G. , Global Behavior of Nonlinear Difference Equations of Higher Order with Applications , Kluwer Academic Publishers, Dordrecht, 1993. MR94k :39005

Ladas G. , '', in Global Behavior of Nonlinear Difference Equations of Higher Order with Applications , (1993 ) -.

• Kulenovic, M. R. S. and Ladas, G. , Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures , Chapman & Hall / CRC Press, 2002. MR2004c :39001

• Kulenovic, M. R. S., Ladas, G. and Sizer, W. , On the recursive sequence xn +1 = αxn + βxn −1 / γxn + δxn −1 , Math. Sci. Res. Hot-Line , 2 (1998), no. 5, 1–16. MR99g :39008

Sizer W. , 'On the recursive sequence xn+1 = αxn+βxn−1/γxn+δxn−1 ' (1998 ) 2 Math. Sci. Res. Hot-Line : 1 -16.

• Patula, W. T. and Voulov, H. D. , On the oscillation and periodic character of a third order rational difference equation, Proc. Am. Math. Soc. , 131 (2002), no. 3, 905–909. MR2003j :39008

Voulov H. D. , 'On the oscillation and periodic character of a third order rational difference equation ' (2002 ) 131 Proc. Am. Math. Soc. : 905 -909.

• Sedaghat, H. , Nonlinear Difference Equations, Theory with Applications to Social Science Models , Kluwer Academic Publishers, Dordrect, 2003. MR2004f :39001

Sedaghat H. , '', in Nonlinear Difference Equations, Theory with Applications to Social Science Models , (2003 ) -.

• Stevic, S. , A global convergence result with applications to periodic solutions, Indian J. Pure Appl. Math. , 33 (2002), no. 1, 45–53. MR2002k :39003

Stevic S. , 'A global convergence result with applications to periodic solutions ' (2002 ) 33 Indian J. Pure Appl. Math. : 45 -53.

• Stevic, S. , Behavior of the positive solutions of the generalized Beddington-Holt equation, Panamer. Math. J. , 10 (2000), no. 4, 77–85. MR2001k :39029

Stevic S. , 'Behavior of the positive solutions of the generalized Beddington-Holt equation ' (2000 ) 10 Panamer. Math. J. : 77 -85.

• Stevic, S. , On the recursive sequence xn +1 = xn −1 / g ( xn ), Taiwanese J. Math. , 6 (2002), no. 3, 405–414. MR2003h :39011

Stevic S. , 'On the recursive sequence xn+1 = xn−1/g(xn) ' (2002 ) 6 Taiwanese J. Math. : 405 -414.

• Yan, X. and Li, W. , Global attractivity in the recursive sequence xn +1 = αβxn / γxn −1 , Appl. Math. Comp. , 138 (2003), no. 2–3, 415–423. MR2004a :39027

Li W. , 'Global attractivity in the recursive sequence xn+1 = α−βxn/γ−xn−1 ' (2003 ) 138 Appl. Math. Comp. : 415 -423.

• Yang, X., Su, W., Chen, B., Megson, G. M. and Evans, D. J. , On the recursive sequence xn +1 = axn −1 + bxn −2 / c + dxn −1 xn −2 , Appl. Math. Comp. , 162 (2005), no. 3, 1485–1497. MR2005k :39019

Evans D. J. , 'On the recursive sequence xn+1 = axn−1+bxn−2/c+dxn−1xn−2 ' (2005 ) 162 Appl. Math. Comp. : 1485 -1497.

• Yang, X. , On the global asymptotic stability of the difference equation xn +1 = xn −1 xn −2 + xn −3 + a / xn −1 + xn −2 xn −3 + a , Appl. Math. Comp. , 171 (2005), no. 2, 857–861. MR 2199673

Yang X. , 'On the global asymptotic stability of the difference equation xn+1 = xn−1xn−2+xn−3+a/xn−1+xn−2xn−3+a ' (2005 ) 171 Appl. Math. Comp. : 857 -861.

• Zhang, B. G., Tian, C. J. and Wong, P. J. , Global attractivity of difference equations with variable delay, Dynam. Contin. Discrete Impuls. Systems , 6 (1999), no. 3, 307–317. MR2000i 39012

Wong P. J. , 'Global attractivity of difference equations with variable delay ' (1999 ) 6 Dynam. Contin. Discrete Impuls. Systems : 307 -317.

• Zhang, D. C., Shi, B. and Gai, J. , A rational recursive sequence, Comp. Math. Appl. , 41 (2001), no. 3–4, 301–306. MR2002e :39060

Gai J. , 'A rational recursive sequence ' (2001 ) 41 Comp. Math. Appl. : 301 -306.

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics)

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

• Imre BÁRÁNY (Rényi Institute of Mathematics)
• Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
• Péter CSIKVÁRI (ELTE, Budapest)
• Joshua GREENE (Boston College)
• Penny HAXELL (University of Waterloo)
• Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
• Ron HOLZMAN (Technion, Haifa)
• Satoru IWATA (University of Tokyo)
• Tibor JORDÁN (ELTE, Budapest)
• Roy MESHULAM (Technion, Haifa)
• Frédéric MEUNIER (École des Ponts ParisTech)
• Márton NASZÓDI (ELTE, Budapest)
• Eran NEVO (Hebrew University of Jerusalem)
• János PACH (Rényi Institute of Mathematics)
• Péter Pál PACH (BME, Budapest)
• Andrew SUK (University of California, San Diego)
• Zoltán SZABÓ (Princeton University)
• Martin TANCER (Charles University, Prague)
• Gábor TARDOS (Rényi Institute of Mathematics)
• Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

• CompuMath Citation Index
• Essential Science Indicators
• Mathematical Reviews
• Science Citation Index Expanded (SciSearch)
• SCOPUS
• Zentralblatt MATH
 2020 Total Cites 536 WoS Journal Impact Factor 0,855 Rank by Mathematics 189/330 (Q3) Impact Factor Impact Factor 0,826 without Journal Self Cites 5 Year 1,703 Impact Factor Journal 0,68 Citation Indicator Rank by Journal Mathematics 230/470 (Q2) Citation Indicator Citable 32 Items Total 32 Articles Total 0 Reviews Scimago 24 H-index Scimago 0,307 Journal Rank Scimago Mathematics (miscellaneous) Q3 Quartile Score Scopus 139/130=1,1 Scite Score Scopus General Mathematics 204/378 (Q3) Scite Score Rank Scopus 1,069 SNIP Days from 85 submission to acceptance Days from 123 acceptance to publication Acceptance 16% Rate

2019
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Subscription fee 2022

Online subsscription: 688 EUR / 860 USD
Print + online subscription: 776 EUR / 970 USD

Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder's
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher's
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher